xml2txt

-*- coding: utf-8 -*-

import xml.etree.ElementTree as ET

import os

from os import getcwd

sets = ['train', 'val', 'test']

classes = ["person"] # 改成自己的类别

abs_path = os.getcwd()

print(abs_path)

def convert(size, box):

dw = 1. / (size[0])

dh = 1. / (size[1])

x = (box[0] + box[1]) / 2.0 - 1

y = (box[2] + box[3]) / 2.0 - 1

w = box[1] - box[0]

h = box[3] - box[2]

x = x * dw

w = w * dw

y = y * dh

h = h * dh

return x, y, w, h

def convert_annotation(image_id):

in_file = open('data_prov2/xml/train/%s.xml' % (image_id), encoding='UTF-8')

out_file = open('data_prov2/labels/train/%s.txt' % (image_id), 'w')

tree = ET.parse(in_file)

root = tree.getroot()

size = root.find('size')

w = int(size.find('width').text)

h = int(size.find('height').text)

for obj in root.iter('object'):

difficult = obj.find('Difficult').text

difficult = obj.find('difficult').text

cls = obj.find('name').text

if cls not in classes or int(difficult) == 1:

continue

cls_id = classes.index(cls)

xmlbox = obj.find('bndbox')

b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),

float(xmlbox.find('ymax').text))

b1, b2, b3, b4 = b

标注越界修正

if b2 > w:

b2 = w

if b4 > h:

b4 = h

b = (b1, b2, b3, b4)

bb = convert((w, h), b)

out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

for image_set in sets:

if not os.path.exists('data_prov2/labels/train/'):

os.makedirs('data_prov2/labels/train/')

image_ids = open('data_prov2/dataSet/%s.txt' % (image_set)).read().strip().split()

list_file = open('data_prov2/%s.txt' % (image_set), 'w')

for image_id in image_ids:

list_file.write(abs_path + 'data_prov2/images/train/%s.jpg\n' % (image_id))

convert_annotation(image_id)

list_file.close()

相关推荐
qq_365911606 分钟前
中英文提示词对AI IDE编程能力影响有多大?
人工智能
jndingxin9 分钟前
OpenCV 图形API(31)图像滤波-----3x3 腐蚀操作函数erode3x3()
人工智能·opencv·计算机视觉
GoMaxAi21 分钟前
金融行业 AI 报告自动化:Word+PPT 双引擎生成方案
人工智能·unity·ai作画·金融·自动化·aigc·word
訾博ZiBo38 分钟前
AI日报 - 2025年04月16日
人工智能
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的乳腺癌逻辑回归)
人工智能·pytorch·python·分类·逻辑回归·学习方法
Hali_Botebie1 小时前
【端到端】端到端自动驾驶依赖Occupancy进行运动规划?还是可以具有生成局部地图来规划?
人工智能·机器学习·自动驾驶
88号技师1 小时前
【2024年最新IEEE Trans】模糊斜率熵Fuzzy Slope entropy及5种多尺度,应用于状态识别、故障诊断!
人工智能·算法·matlab·时序分析·故障诊断·信息熵·特征提取
新知图书1 小时前
OpenCV滑动条事件
人工智能·opencv·计算机视觉
清同趣科研2 小时前
R绘图|6种NMDS(非度量多维分析)绘图保姆级模板——NMDS从原理到绘图,看师兄这篇教程就够了
人工智能·算法
凡人的AI工具箱2 小时前
PyTorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(三)
人工智能·pytorch·python·深度学习·学习·生成对抗网络