xml2txt

-*- coding: utf-8 -*-

import xml.etree.ElementTree as ET

import os

from os import getcwd

sets = ['train', 'val', 'test']

classes = ["person"] # 改成自己的类别

abs_path = os.getcwd()

print(abs_path)

def convert(size, box):

dw = 1. / (size[0])

dh = 1. / (size[1])

x = (box[0] + box[1]) / 2.0 - 1

y = (box[2] + box[3]) / 2.0 - 1

w = box[1] - box[0]

h = box[3] - box[2]

x = x * dw

w = w * dw

y = y * dh

h = h * dh

return x, y, w, h

def convert_annotation(image_id):

in_file = open('data_prov2/xml/train/%s.xml' % (image_id), encoding='UTF-8')

out_file = open('data_prov2/labels/train/%s.txt' % (image_id), 'w')

tree = ET.parse(in_file)

root = tree.getroot()

size = root.find('size')

w = int(size.find('width').text)

h = int(size.find('height').text)

for obj in root.iter('object'):

difficult = obj.find('Difficult').text

difficult = obj.find('difficult').text

cls = obj.find('name').text

if cls not in classes or int(difficult) == 1:

continue

cls_id = classes.index(cls)

xmlbox = obj.find('bndbox')

b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),

float(xmlbox.find('ymax').text))

b1, b2, b3, b4 = b

标注越界修正

if b2 > w:

b2 = w

if b4 > h:

b4 = h

b = (b1, b2, b3, b4)

bb = convert((w, h), b)

out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

for image_set in sets:

if not os.path.exists('data_prov2/labels/train/'):

os.makedirs('data_prov2/labels/train/')

image_ids = open('data_prov2/dataSet/%s.txt' % (image_set)).read().strip().split()

list_file = open('data_prov2/%s.txt' % (image_set), 'w')

for image_id in image_ids:

list_file.write(abs_path + 'data_prov2/images/train/%s.jpg\n' % (image_id))

convert_annotation(image_id)

list_file.close()

相关推荐
数新网络36 分钟前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee1 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch1 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手1 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1331 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯1 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q2 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs2 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链
张彦峰ZYF2 小时前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计
哥布林学者3 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (二) 图像风格转换
深度学习·ai