1 准备数据
我们这次Spark-sql操作所有的数据均来自Hive,首先在Hive中创建表,并导入数据。一共有3张表:1张用户行为表,1张城市表,1张产品表。
1)将city_info.txt、product_info.txt、user_visit_action.txt上传到/opt/module/data
[atguigu@hadoop102 module]$ mkdir data
2)将创建对应的三张表
hive (default)>`
`CREATE` `TABLE `user_visit_action`(`
` `date` string,`
` `user_id` bigint,`
` `session_id` string,`
` `page_id` bigint,`
` `action_time` string,`
` `search_keyword` string,`
` `click_category_id` bigint,`
` `click_product_id` bigint,` `--点击商品id,没有商品用-1表示。`
` `order_category_ids` string,`
` `order_product_ids` string,`
` `pay_category_ids` string,`
` `pay_product_ids` string,`
` `city_id` bigint --城市id`
`)`
`row format delimited fields terminated by '\t';`
`CREATE` `TABLE `city_info`(`
` `city_id` bigint,` `--城市id`
` `city_name` string,` `--城市名称`
` `area` string --区域名称`
`)`
`row format delimited fields terminated by '\t';`
`CREATE` `TABLE `product_info`(`
` `product_id` bigint,` `-- 商品id`
` `product_name` string,` `--商品名称`
` `extend_info` string`
`)`
`row format delimited fields terminated by '\t';`
`
3)并加载数据
hive (default)>`
`load data local inpath '/opt/module/data/user_visit_action.txt' into table user_visit_action;`
`load data local inpath '/opt/module/data/product_info.txt' into table product_info;`
`load data local inpath '/opt/module/data/city_info.txt' into table city_info;
4)测试一下三张表数据是否正常
hive (default)>`
`select * from user_visit_action limit 5;`
`select * from product_info limit 5;`
`select * from city_info limit 5;`
`
2 需求:各区域 热门 商品Top3
2 .1 需求简介
这里的热门商品是从点击量的维度来看的,计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。
例如:
|--------|----------|----------|----------|
| 地区 | 商品名称 | 点击次数 | 城市备注 |
|----|-----|--------|-------------------------|
| 华北 | 商品A | 100000 | 北京21.2%,天津13.2%,其他65.6% |
| 华北 | 商品P | 80200 | 北京63.0%,太原10%,其他27.0% |
| 华北 | 商品M | 40000 | 北京63.0%,太原10%,其他27.0% |
| 东北 | 商品J | 92000 | 大连28%,辽宁17.0%,其他 55.0% |
2 .2 思路分析
CREATE` `TABLE `user_visit_action`(`
` `date` string,`
` `user_id` bigint,`
` `session_id` string,`
` `page_id` bigint,`
` `action_time` string,`
` `search_keyword` string,`
` `click_category_id` bigint,`
` `click_product_id` bigint,` `--点击商品id,没有商品用-1表示。`
` `order_category_ids` string,`
` `order_product_ids` string,`
` `pay_category_ids` string,`
` `pay_product_ids` string,`
` `city_id` bigint --城市id`
`)`
`CREATE` `TABLE `city_info`(`
` `city_id` bigint,` `--城市id`
` `city_name` string,` `--城市名称`
` `area` string --区域名称`
`)`
`CREATE` `TABLE `product_info`(`
` `product_id` bigint,` `-- 商品id`
` `product_name` string,` `--商品名称`
` `extend_info` string`
`)`
`city_remark`
`IN: 城市名称 String`
`BUFF: totalcnt总点击量,Map[(cityName, 点击数量)]`
`OUT:城市备注 String
`
`select`
` c.area,` `--地区`
` c.city_name,` `-- 城市`
` p.product_name,` `-- 商品名称`
` v.click_product_id -- 点击商品id`
`from user_visit_action v`
`join city_info c`
`on v.city_id = c.city_id`
`join product_info p`
`on v.click_product_id = p.product_id`
`where click_product_id >` `-1`
`select`
` t1.area,` `--地区`
` t1.product_name,` `-- 商品名称`
`count(*) click_count,` `-- 商品点击次数`
`city_remark(t1.city_name)` `--城市备注`
`from t1`
`group by t1.area, t1.product_name`
`select`
`*,`
`rank()` `over(partition by t2.area order by t2.click_count desc) rank -- 每个区域内按照点击量,倒序排行`
`from t2`
`select`
`*`
`from t3`
`where rank <=` `3`
`
使用Spark-SQL来完成复杂的需求,可以使用UDF或UDAF。
(1)查询出来所有的点击记录,并与city_info表连接,得到每个城市所在的地区,与 Product_info表连接得到商品名称。
(2)按照地区和商品名称分组,统计出每个商品在每个地区的总点击次数。
(3)每个地区内按照点击次数降序排列。
(4)只取前三名,并把结果保存在数据库中。
(5)城市备注需要自定义UDAF函数。
2 .3 代码实现
package com.atguigu.sparksql.demo;`
`import lombok.Data;`
`import org.apache.spark.SparkConf;`
`import org.apache.spark.sql.*;`
`import org.apache.spark.sql.expressions.Aggregator;`
`import java.io.Serializable;`
`import java.util.ArrayList;`
`import java.util.HashMap;`
`import java.util.TreeMap;`
`import java.util.function.BiConsumer;`
`import` `static org.apache.spark.sql.functions.udaf;`
`public` `class` `Test01_Top3` `{`
`public` `static void main(String[] args)` `{`
`// 1. 创建sparkConf配置对象`
`SparkConf conf =` `new` `SparkConf().setAppName("sql").setMaster("local[*]");`
`// 2. 创建sparkSession连接对象`
`SparkSession spark =` `SparkSession.builder().enableHiveSupport().config(conf).getOrCreate();`
`// 3. 编写代码`
`// 将3个表格数据join在一起`
`Dataset<Row> t1DS = spark.sql("select \n"` `+`
`"\tc.area,\n"` `+`
`"\tc.city_name,\n"` `+`
`"\tp.product_name\n"` `+`
`"from\n"` `+`
`"\tuser_visit_action u\n"` `+`
`"join\n"` `+`
`"\tcity_info c\n"` `+`
`"on\n"` `+`
`"\tu.city_id=c.city_id\n"` `+`
`"join\n"` `+`
`"\tproduct_info p\n"` `+`
`"on\n"` `+`
`"\tu.click_product_id=p.product_id");`
` t1DS.createOrReplaceTempView("t1");`
` spark.udf().register("cityMark",udaf(new` `CityMark(),Encoders.STRING()));`
`// 将区域内的产品点击次数统计出来`
`Dataset<Row> t2ds = spark.sql("select \n"` `+`
`"\tarea,\n"` `+`
`"\tproduct_name,\n"` `+`
`"\tcityMark(city_name) mark,\n"` `+`
`"\tcount(*) counts\n"` `+`
`"from\t\n"` `+`
`"\tt1\n"` `+`
`"group by\n"` `+`
`"\tarea,product_name");`
`// t2ds.show(false);`
` t2ds.createOrReplaceTempView("t2");`
`// 对区域内产品点击的次数进行排序 找出区域内的top3`
` spark.sql("select\n"` `+`
`"\tarea,\n"` `+`
`"\tproduct_name,\n"` `+`
`"\tmark,\n"` `+`
`"\trank() over (partition by area order by counts desc) rk\n"` `+`
`"from \n"` `+`
`"\tt2").createOrReplaceTempView("t3");`
`// 使用过滤 取出区域内的top3`
` spark.sql("select\n"` `+`
`"\tarea,\n"` `+`
`"\tproduct_name,\n"` `+`
`"\tmark \n"` `+`
`"from\n"` `+`
`"\tt3\n"` `+`
`"where \n"` `+`
`"\trk < 4").show(50,false);`
`// 4. 关闭sparkSession`
` spark.close();`
`}`
` @Data`
`public` `static` `class` `Buffer implements Serializable` `{`
`private` `Long totalCount;`
`private` `HashMap<String,Long>` `map;`
`public` `Buffer()` `{`
`}`
`public` `Buffer(Long totalCount,` `HashMap<String,` `Long>` `map)` `{`
` this.totalCount = totalCount;`
` this.map` `=` `map;`
`}`
`}`
`public` `static` `class` `CityMark extends Aggregator<String,` `Buffer,` `String>` `{`
`public` `static` `class` `CityCount` `{`
`public` `String name;`
`public` `Long` `count;`
`public` `CityCount(String name,` `Long` `count)` `{`
` this.name = name;`
` this.count` `=` `count;`
`}`
`public` `CityCount()` `{`
`}`
`}`
`public` `static` `class` `CompareCityCount implements Comparator<CityCount>` `{`
`/**`
` * 默认倒序`
` * @param o1`
` * @param o2`
` * @return`
` */`
` @Override`
`public int compare(CityCount o1,` `CityCount o2)` `{`
`if` `(o1.count` `> o2.count)` `{`
`return` `-1;`
`}` `else` `return o1.count.equals(o2.count)` `?` `0` `:` `1;`
`}`
`}`
` @Override`
`public` `Buffer` `zero()` `{`
`return` `new` `Buffer(0L,` `new` `HashMap<String,` `Long>());`
`}`
`/**`
` * 分区内的预聚合`
` *`
` * @param b map(城市,sum)`
` * @param a 当前行表示的城市`
` * @return`
` */`
` @Override`
`public` `Buffer` `reduce(Buffer b,` `String a)` `{`
`HashMap<String,` `Long> hashMap = b.getMap();`
`// 如果map中已经有当前城市 次数+1`
`// 如果map中没有当前城市 0+1`
` hashMap.put(a, hashMap.getOrDefault(a, 0L)` `+` `1);`
` b.setTotalCount(b.getTotalCount()` `+ 1L);`
`return b;`
`}`
`/**`
` * 合并多个分区间的数据`
` *`
` * @param b1 (北京,100),(上海,200)`
` * @param b2 (天津,100),(上海,200)`
` * @return`
` */`
` @Override`
`public` `Buffer` `merge(Buffer b1,` `Buffer b2)` `{`
` b1.setTotalCount(b1.getTotalCount()` `+ b2.getTotalCount());`
`HashMap<String,` `Long> map1 = b1.getMap();`
`HashMap<String,` `Long> map2 = b2.getMap();`
`// 将map2中的数据放入合并到map1`
` map2.forEach(new` `BiConsumer<String,` `Long>()` `{`
` @Override`
`public void accept(String s,` `Long aLong)` `{`
` map1.put(s, aLong + map1.getOrDefault(s, 0L));`
`}`
`});`
`return b1;`
`}`
`/**`
` * map => {(上海,200),(北京,100),(天津,300)}`
` *`
` * @param reduction`
` * @return`
` */`
` @Override`
`public` `String` `finish(Buffer reduction)` `{`
`Long totalCount = reduction.getTotalCount();`
`HashMap<String,` `Long>` `map` `= reduction.getMap();`
`// 需要对map中的value次数进行排序`
`ArrayList<CityCount> cityCounts =` `new` `ArrayList<>();`
`// 将map中的数据放入到treeMap中 进行排序`
`map.forEach(new` `BiConsumer<String,` `Long>()` `{`
` @Override`
`public void accept(String s,` `Long aLong)` `{`
` cityCounts.add(new` `CityCount(s, aLong));`
`}`
`});`
` cityCounts.sort(new` `CompareCityCount());`
`ArrayList<String> resultMark =` `new` `ArrayList<>();`
`Double sum =` `0.0;`
`// 当前没有更多的城市数据 或者 已经找到两个城市数据了 停止循环`
`while` `(!(cityCounts.size()` `==` `0)` `&& resultMark.size()` `<` `2)` `{`
`CityCount cityCount = cityCounts.get(0);`
` resultMark.add(cityCount.name +` `String.format("%.2f",cityCount.count.doubleValue()` `/ totalCount *` `100)` `+` `"%");`
` cityCounts.remove(0);`
`}`
`// 拼接其他城市`
`if` `(cityCounts.size()` `>` `0)` `{`
` resultMark.add("其他"` `+` `String.format("%.2f",` `100` `- sum)` `+` `"%");`
`}`
`StringBuilder cityMark =` `new` `StringBuilder();`
`for` `(String s : resultMark)` `{`
` cityMark.append(s).append(",");`
`}`
`return cityMark.substring(0, cityMark.length()` `-` `1);`
`}`
` @Override`
`public` `Encoder<Buffer>` `bufferEncoder()` `{`
`return` `Encoders.javaSerialization(Buffer.class);`
`}`
` @Override`
`public` `Encoder<String>` `outputEncoder()` `{`
`return` `Encoders.STRING();`
`}`
`}`
`}`
`