SLAM中提到的相机位姿到底指什么?

不小心又绕进去了,所以掰一下。

以我个人最直观的理解,假设无旋转,相机在世界坐标系的(5,0,0)^T的位置上,所谓"位姿",应该反映相机的位置,所以相机位姿应该如下:

cpp 复制代码
    Eigen::Matrix4d T = Eigen::Matrix4d::Identity(); // 假设T是一个4x4的矩阵,初始化为单位矩阵
    T(0, 3) = 5.0;

但是根据我对位姿的这个理解,再结合高翔博士的《十四讲》第五章,第二版P99,世界坐标系的点变换到相机坐标系,是直接"左乘""相机位姿",Pc=T*Pw,那么这就出现了一些小问题

问题点:相机坐标是(5,0,0)^T,世界坐标点位置是(100,0,0)^T,相机坐标系下,这个点肯定是100-5,是(95,0,0)^T,但是又因为相机"位姿"是(5,0,0)^T,直接左乘相机"位姿"就得到了第一个结果"Pc=105 0 0",这明显和预期不一样,按照这种T的声明与定义,需要左乘T的逆才能得到预期的结果"Pc3 = 95 0 0 1"(齐次)

所以高翔博士提到的位姿是可以直接左乘的,和我认为的位姿是逆的关系。

根据习惯定义,想把Pw转换为Pc,应该是Pc=Tcw*Pw,高翔博士称为位姿的是Tcw。

根据主观习惯,相机在世界坐标系的位姿应该是Twc。想获得Pc应该是Pc=Twc^(-1)*Pw。

所以,我们产生了两种位姿描述。哪一种是正确的呢?很遗憾,我目前没有答案,网上搜到的一些关于位姿的解释则更加"和稀泥",Tcw和Twc两种都可以叫位姿。根据有限的学识,我只能说我们清楚什么变换能干什么,能通过调整用法获得自己想要的结果就好,个别说法不能较真。

相关推荐
YuTaoShao几秒前
【LeetCode 热题 100】240. 搜索二维矩阵 II——排除法
java·算法·leetcode
写个博客43 分钟前
暑假算法日记第二天
算法
ChaITSimpleLove1 小时前
.NET9 实现排序算法(MergeSortTest 和 QuickSortTest)性能测试
算法·排序算法·.net·benchmarkdotnet·datadog.trace
CVer儿1 小时前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
Owen_Q1 小时前
Denso Create Programming Contest 2025(AtCoder Beginner Contest 413)
开发语言·算法·职场和发展
MidJourney中文版1 小时前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
Wilber的技术分享2 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
Tanecious.3 小时前
LeetCode 876. 链表的中间结点
算法·leetcode·链表
Wo3Shi4七3 小时前
哈希冲突
数据结构·算法·go
呆呆的小鳄鱼3 小时前
cin,cin.get()等异同点[面试题系列]
java·算法·面试