SLAM中提到的相机位姿到底指什么?

不小心又绕进去了,所以掰一下。

以我个人最直观的理解,假设无旋转,相机在世界坐标系的(5,0,0)^T的位置上,所谓"位姿",应该反映相机的位置,所以相机位姿应该如下:

cpp 复制代码
    Eigen::Matrix4d T = Eigen::Matrix4d::Identity(); // 假设T是一个4x4的矩阵,初始化为单位矩阵
    T(0, 3) = 5.0;

但是根据我对位姿的这个理解,再结合高翔博士的《十四讲》第五章,第二版P99,世界坐标系的点变换到相机坐标系,是直接"左乘""相机位姿",Pc=T*Pw,那么这就出现了一些小问题

问题点:相机坐标是(5,0,0)^T,世界坐标点位置是(100,0,0)^T,相机坐标系下,这个点肯定是100-5,是(95,0,0)^T,但是又因为相机"位姿"是(5,0,0)^T,直接左乘相机"位姿"就得到了第一个结果"Pc=105 0 0",这明显和预期不一样,按照这种T的声明与定义,需要左乘T的逆才能得到预期的结果"Pc3 = 95 0 0 1"(齐次)

所以高翔博士提到的位姿是可以直接左乘的,和我认为的位姿是逆的关系。

根据习惯定义,想把Pw转换为Pc,应该是Pc=Tcw*Pw,高翔博士称为位姿的是Tcw。

根据主观习惯,相机在世界坐标系的位姿应该是Twc。想获得Pc应该是Pc=Twc^(-1)*Pw。

所以,我们产生了两种位姿描述。哪一种是正确的呢?很遗憾,我目前没有答案,网上搜到的一些关于位姿的解释则更加"和稀泥",Tcw和Twc两种都可以叫位姿。根据有限的学识,我只能说我们清楚什么变换能干什么,能通过调整用法获得自己想要的结果就好,个别说法不能较真。

相关推荐
uhakadotcom10 分钟前
OpenAI 的 PaperBench:AI 研究复现基准测试工具
算法·面试·github
凯强同学16 分钟前
第十四届蓝桥杯大赛软件赛省赛Python 大学 C 组:6.棋盘
python·算法·蓝桥杯
wuqingshun31415943 分钟前
蓝桥杯 切割
数据结构·c++·算法·职场和发展·蓝桥杯
艾妮艾妮1 小时前
C语言常见3种排序
java·c语言·开发语言·c++·算法·c#·排序算法
百度Geek说1 小时前
前沿多模态模型开发与应用实战3:DeepSeek-VL2多模态理解大模型算法解析与功能抢先体验
算法
小王努力学编程1 小时前
动态规划学习——回文子串系列问题【C++】
c++·学习·算法·leetcode·动态规划
ZTLJQ1 小时前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
JohnFF1 小时前
48. 旋转图像
数据结构·算法·leetcode
bbc1212261 小时前
AT_abc306_b [ABC306B] Base 2
算法
生锈的键盘2 小时前
推荐算法实践:movielens数据集
算法