天池2023智能驾驶汽车虚拟仿真视频数据理解--baseline

baseline

代码

百度飞浆一键运行

python 复制代码
import paddle
from PIL import Image
from clip import tokenize, load_model
import glob, json, os
import cv2
from PIL import Image
from tqdm import tqdm_notebook
import numpy as np
from sklearn.preprocessing import normalize
import matplotlib.pyplot as plt

model, transforms = load_model('ViT_B_32', pretrained=True)

en_match_words = {
"scerario" : ["suburbs","city street","expressway","tunnel","parking-lot","gas or charging stations","unknown"],
"weather" : ["clear","cloudy","raining","foggy","snowy","unknown"],
"period" : ["daytime","dawn or dusk","night","unknown"],
"road_structure" : ["normal","crossroads","T-junction","ramp","lane merging","parking lot entrance","round about","unknown"],
"general_obstacle" : ["nothing","speed bumper","traffic cone","water horse","stone","manhole cover","nothing","unknown"],
"abnormal_condition" : ["uneven","oil or water stain","standing water","cracked","nothing","unknown"],
"ego_car_behavior" : ["slow down","go straight","turn right","turn left","stop","U-turn","speed up","lane change","others"],
"closest_participants_type" : ["passenger car","bus","truck","pedestrain","policeman","nothing","others","unknown"],
"closest_participants_behavior" : ["slow down","go straight","turn right","turn left","stop","U-turn","speed up","lane change","others"],
}

submit_json = {
    "author" : "abc" ,
    "time" : "231011",
    "model" : "model_name",
    "test_results" : []
}

paths = glob.glob('./初赛测试视频/*')
paths.sort()

for video_path in paths:
    print(video_path)
    
    clip_id = video_path.split('/')[-1]
    cap = cv2.VideoCapture(video_path)
    img = cap.read()[1]
    image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(image)
    image = transforms(image).unsqueeze(0)

    single_video_result = {
        "clip_id": clip_id,
        "scerario" : "cityroad",
        "weather":"unknown",
        "period":"night",
        "road_structure":"ramp",
        "general_obstacle":"nothing",
        "abnormal_condition":"nothing",
        "ego_car_behavior":"turning right",
        "closest_participants_type":"passenger car",
        "closest_participants_behavior":"braking"
    }
    
    for keyword in en_match_words.keys():
        if keyword not in ["weather", "road_structure"]:
            continue
            
        texts = np.array(en_match_words[keyword])

        with paddle.no_grad():
            logits_per_image, logits_per_text = model(image, tokenize(en_match_words[keyword]))
            probs = paddle.nn.functional.softmax(logits_per_image, axis=-1)

        probs = probs.numpy()        
        single_video_result[keyword] = texts[probs[0].argsort()[::-1][0]]
        
    submit_json["test_results"].append(single_video_result)
    
with open('clip_result.json', 'w', encoding='utf-8') as up:
    json.dump(submit_json, up, ensure_ascii=False)
相关推荐
小白狮ww几秒前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
小镇敲码人2 分钟前
深入剖析华为CANN框架下的Ops-CV仓库:从入门到实战指南
c++·python·华为·cann
lili-felicity2 分钟前
CANN优化LLaMA大语言模型推理:KV-Cache与FlashAttention深度实践
人工智能·语言模型·llama
程序猿追4 分钟前
深度解码昇腾 AI 算力引擎:CANN Runtime 核心架构与技术演进
人工智能·架构
金融RPA机器人丨实在智能5 分钟前
Android Studio开发App项目进入AI深水区:实在智能Agent引领无代码交互革命
android·人工智能·ai·android studio
lili-felicity8 分钟前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
做人不要太理性9 分钟前
CANN Runtime 运行时组件深度解析:任务下沉执行、异构内存规划与全栈维测诊断机制
人工智能·神经网络·魔珐星云
不爱学英文的码字机器9 分钟前
破壁者:CANN ops-nn 仓库与昇腾 AI 算子优化的工程哲学
人工智能
晚霞的不甘12 分钟前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频
愚公搬代码12 分钟前
【愚公系列】《AI短视频创作一本通》016-AI短视频的生成(AI短视频运镜方法)
人工智能·音视频