python科研绘图:帕累托图(Pareto chart)

目录

帕累托图基本构成

绘制帕累托图的步骤


帕累托图(Pareto chart)是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。以意大利经济学家V.Pareto的名字而命名的。帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。

帕累托图基本构成

(1)双y轴图,左侧y轴表示频数,右侧y轴表示频率百分比,x轴表示特征因素

(2)左侧y轴数据对应柱状图,右侧y轴数据对应点线图

(3)点线图中超过80%的第一个因素进行标记,左侧就为核心特征因素

绘制帕累托图的步骤

帕累托图是一种直方图,用于显示按重要性递减排列的因素的贡献。它基于帕累托法则,该法则表明80%的问题通常来自于20%的原因。绘制帕累托图的步骤包括:

(1)收集数据: 收集与问题或现象相关的数据,确保数据是可度量和可分类的。

(2)分类和排序: 将数据按照其贡献的重要性进行分类和排序。通常,这是按照贡献的大小进行的。

(3)绘制条形图: 使用条形图表示每个类别的贡献。类别按照重要性递减的顺序排列。

(4)添加累积百分比线: 添加一条表示累积百分比的线,以显示贡献的累积效果。

(5)分析结果: 通过帕累托图,可以清晰地看到哪些因素对整体有重大影响,使决策者能够更有针对性地解决问题。

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.Series(np.random.randn(10)*5000 + 10000,index = list('ABCDEFGHIJ'))
def Pareto_analysis(data):
    data.sort_values(ascending=False,inplace = True)
    p = data.cumsum()/data.sum()
    key = p[p>0.8].index[0]
    key_num = data.index.tolist().index(key)
    print('More than 80% of the node values are indexed as:',key)
    print('More than 80% of the node values index position is:',key_num)
​
    key_product = data.loc[:key]
    print('The key factors are:')
    print(key_product)
​
    plt.figure(figsize=(12,4))
    data.plot(kind = 'bar', color = 'g',edgecolor = 'black', alpha = 0.8, width = 0.6,rot=0)
    plt.ylabel('Frequency')
    plt.xlabel('Characteristic factor')
    p.plot(style = '--ko',secondary_y = True)
​
    plt.axvline(key_num,color='r',linestyle="--",alpha=0.8)
    plt.text(key_num+0.2,p[key],"The cumulative proportion is:%.3f%%" % (p[key]*100), color = 'r')
    plt.ylabel('Cumulative percentages')
​
    plt.xlim(-0.5,len(data)-0.5)
    plt.show()
​
Pareto_analysis(data)

More than 80% of the node values are indexed as: J

More than 80% of the node values index position is: 5

The key factors are:

C 16942.988165

H 15908.169490

B 12639.514649

I 10184.483882

F 10019.403608

J 9145.875791

dtype: float64

相关推荐
卡卡恩1 小时前
使用uv创建系统全局python执行环境
python
查士丁尼·绵1 小时前
笔试-座位调整
python
飞翔的佩奇1 小时前
【完整源码+数据集+部署教程】【运动的&足球】足球场地区域图像分割系统源码&数据集全套:改进yolo11-RFAConv
前端·python·yolo·计算机视觉·数据集·yolo11·足球场地区域图像分割系统
MYX_3093 小时前
第四章 多层感知机
开发语言·python
盼哥PyAI实验室3 小时前
《Python爬虫 + 飞书自动化上传》全流程详细讲解
爬虫·python·飞书
时空无限4 小时前
conda 管理 python 版本和虚拟环境
python·conda
隔壁程序员老王4 小时前
基于 Python 的坦克大战小程序,使用 Pygame 库开发
python·小程序·pygame·1024程序员节
小二·4 小时前
从零开始:使用 Vue-ECharts 实现数据可视化图表功能
vue.js·信息可视化·echarts
kaikaile19954 小时前
Java面试题总结
开发语言·python
周周记笔记4 小时前
Python及Ipython解释器
开发语言·python