论文阅读——RetNet

transformer的问题:计算量大,占用内存大,不好部署。

所以大家在找能解决办法,既能和transformer表现一样好,又能在推理阶段计算复杂度很低。

这些方法大概分类三类:一是代替transformer非线性注意力机制的线性注意力,二是牺牲并行训练,但是推理效率高的循环模型,三是寻找一种其他机制代替注意力机制。但是都不成功。

RetNet整体结构:

X是每层的输入序列,LN是LayerNorm

MSR:multi-scale retention

RetNet是L个单独模块堆叠,每个模块包含MSR和FFN两部分。

考虑循环模型序列建模问题,可以表示为:

其中,Sn是隐层,Vn是输入。

By absorbing A into WQ and WK,把方程写为:

γ简化为标量:

retention layer定义为:

相关推荐
德迅云安全—珍珍3 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
数新网络5 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee5 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch6 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手6 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1336 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯6 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q6 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs6 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链
张彦峰ZYF7 小时前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计