论文阅读——RetNet

transformer的问题:计算量大,占用内存大,不好部署。

所以大家在找能解决办法,既能和transformer表现一样好,又能在推理阶段计算复杂度很低。

这些方法大概分类三类:一是代替transformer非线性注意力机制的线性注意力,二是牺牲并行训练,但是推理效率高的循环模型,三是寻找一种其他机制代替注意力机制。但是都不成功。

RetNet整体结构:

X是每层的输入序列,LN是LayerNorm

MSR:multi-scale retention

RetNet是L个单独模块堆叠,每个模块包含MSR和FFN两部分。

考虑循环模型序列建模问题,可以表示为:

其中,Sn是隐层,Vn是输入。

By absorbing A into WQ and WK,把方程写为:

γ简化为标量:

retention layer定义为:

相关推荐
微光闪现几秒前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_18 分钟前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z33 分钟前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派1 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor1 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
努力学习的小洋2 小时前
Python训练打卡Day5离散特征的处理-独热编码
人工智能·python·机器学习
zuozewei2 小时前
7D-AI系列:OpenSpec:AI编程范式的规范驱动框架
人工智能·ai编程
棒棒的皮皮2 小时前
【深度学习】YOLO 进阶提升之源码解读
人工智能·深度学习·yolo·计算机视觉
Sherry Wangs2 小时前
【ML】机器学习进阶
人工智能·python·机器学习
有Li3 小时前
低场强下胎儿身体器官T2*弛豫测定(FOREST)/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·计算机视觉