论文阅读——RetNet

transformer的问题:计算量大,占用内存大,不好部署。

所以大家在找能解决办法,既能和transformer表现一样好,又能在推理阶段计算复杂度很低。

这些方法大概分类三类:一是代替transformer非线性注意力机制的线性注意力,二是牺牲并行训练,但是推理效率高的循环模型,三是寻找一种其他机制代替注意力机制。但是都不成功。

RetNet整体结构:

X是每层的输入序列,LN是LayerNorm

MSR:multi-scale retention

RetNet是L个单独模块堆叠,每个模块包含MSR和FFN两部分。

考虑循环模型序列建模问题,可以表示为:

其中,Sn是隐层,Vn是输入。

By absorbing A into WQ and WK,把方程写为:

γ简化为标量:

retention layer定义为:

相关推荐
木头程序员6 分钟前
工业视觉的“零缺陷”悖论:小样本异常检测的可行路径
人工智能·机器学习
国产化创客8 分钟前
物联网 AI 选型指南:从边缘离线到云端调用,三种模型部署方案深度对比
人工智能·物联网
ZPC821010 分钟前
机械臂urdf
人工智能·算法
pen-ai13 分钟前
PyTorch 张量维度处理详解
人工智能·pytorch·python
CHrisFC14 分钟前
电力线路器材行业LIMS系统应用全解析
网络·人工智能·安全
cxr82816 分钟前
稀缺的炼金术:用第一性原理与系统思维在绝境中构建认知优势
人工智能·思维模型·认知·认知框架
qdprobot16 分钟前
具身智能小智AI小车图形化编程Mixly MQTT MCP AIOT控制齐护机器人
人工智能·机器人
说私域18 分钟前
全民电商时代下的链动2+1模式与S2B2C商城小程序:社交裂变与供应链协同的营销革命
开发语言·人工智能·小程序·php·流量运营
M宝可梦22 分钟前
I-JEPA CVPR2023 LeCun所说的world model和视频生成模型是一回事儿吗
人工智能·大语言模型·世界模型·lecun·jepa
云卓SKYDROID23 分钟前
无人机防撞模块技术解析
人工智能·无人机·高科技·云卓科技·技术解析、