神经网络常见评价指标AUROC(AUC-ROC)、AUPR(AUC-PR)

神经网络的性能可以通过多个评价指标进行衡量,具体选择哪些指标取决于任务的性质。以下是神经网络中常见的评价指标:

  1. 准确性(Accuracy): 准确性是最常见的分类任务评价指标,表示模型正确预测的样本数占总样本数的比例。但在某些不平衡类别的情况下,准确性可能不是一个很好的指标。

  2. 精确度(Precision): 精确度是指在所有被模型预测为正例的样本中,实际为正例的比例。精确度关注的是模型预测为正例的准确性。

  3. 召回率(Recall): 召回率是指在所有实际为正例的样本中,被模型正确预测为正例的比例。召回率关注的是模型对正例的覆盖程度。

  4. F1分数(F1 Score): F1分数是精确度和召回率的调和平均值,综合考虑了模型的准确性和覆盖率。F1分数在不同类别不平衡的情况下比准确性更具意义。

  5. AUC-ROC曲线下面积(Area Under the Receiver Operating Characteristic Curve)(AUC-ROC)(AUROC): 适用于二分类问题,++ROC曲线是以真正例率(True Positive Rate,召回率)为纵轴Y、假正例率(False Positive Rate)为横轴X的曲线++ ,AUC-ROC是ROC曲线下的面积。AUC-ROC通常用于评估模型在不同阈值下的性能。详见:真阳性(TP):判断为真,实际也为真;伪阳性(FP):判断为真,实际为假;伪阴性(FN):判断为假,实际为真;真阴性(TN):判断为假,实际也为假;ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。

    从 (0, 0) 到 (1,1) 的对角线将ROC空间划分为左上/右下两个区域,在这条线的以上的点代表了一个好的分类结果(胜过随机分类),而在这条线以下的点代表了差的分类结果(劣于随机分类)。

  6. AUC-PR(Area Under the Precision versus Recall Curve)(AUPR): PR 曲线则反映了精确率Precision (预测为真阳样本占所有预测为阳性样本的比例)和召回率Recall (预测为真阳样本占所有实际真样本的比例)的关系,其曲线下面积被认为相比于 AUROC 更能反映一个模型对真样本的富集能力

  7. 均方根误差(Root Mean Squared Error,RMSE): 适用于回归任务,RMSE是预测值与真实值之间差异的均方根。对于连续值的预测任务,RMSE常用于度量模型的预测误差。

  8. 平均绝对误差(Mean Absolute Error,MAE): 也用于回归任务,MAE是预测值与真实值之间绝对值的平均值。

  9. 对数损失(Log Loss): 适用于概率性预测任务,对数损失度量模型对真实标签的预测概率分布的拟合程度。

  10. 分类错误率(Classification Error): 表示模型错误分类的样本比例,是准确性的补数。

  11. 混淆矩阵(Confusion Matrix): 提供了模型在不同类别上的详细性能信息,包括真正例、假正例、真负例和假负例。

相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉