二项分布和泊松分布

一、二项分布

1.1 n重伯努利试验

若是二项分布,则必是n重伯努利试验概型。即:每次试验只有两种结果

,且在每次试验中A发生的概率相等,即P(A)=p,将这种试验独立重复n次,则称这种试验为n重伯努利试验,也叫n重伯努利概率模型,所以二项分布也叫伯努利分布。

1.2 什么是二项

二项是指:把一个随机试验的结果只划分成两种。例如:要么A事件发生,要么A事件没发生,记为:

;所以二项的涵义可理解为:随机变量X的取值只有两个,第一个取值的代表某事件发生了,第二个则代表某事件未发生。再例如:将考试成绩的结果分为两类,第一类是成绩≥60分,则第二类是成绩<60分。

1.2 二项分布X~B

用随机变量X来表示在n重伯努利试验中A事件发生的次数,其概率函数为:

,

,

则称:X服从参数为(n,p)的二项分布,记作X~B。期望:E(X)=np;方差:D(X)=n·p(1-p)。

1.4 二项分布的性质

一般地,对于固定的n及p,当k增加时,概率P(X=k)先是随之增加直至到达最大值,随后单调减少:① 当(n+1)p为整数时,概率P(X=k)在k=

=p(n+1)和(n+1)p-1时达到最大值;② 不为整数时,概率P(X=k)在k=

在p(n+1)时达到最大值。称

为二项分布的最可能值。说人话就是:当发生k次为几时,二项分布的概率值最大,最大即意味着最有可能发生。

1.5 二项分布示例

抛一枚硬币,设朝上的结果为随机变量X。问:假设一共抛5次,正面和反面发生的概率均为1/2,求3次正面朝上的概率:

,答:5次中发生3次正面朝上的概率为31.25%

随机变量X(正面朝上次数)的期望:E(X)=np=(

),指:抛5次,正面朝上次数的平均结果是2.5次。

随机变量X(正面朝上次数)的方差:D(X)=n·p(1-p)=(

,指:抛5次,正面朝上出现次数的方差为1.2。

二、泊松分布

2.1 与二项分布的区别

泊松分布可以理解为:二项分布的试验次数趋向于无穷大时,事件A发生的次数及概率的分布。在理论上,泊松分布是二项分布的极限分布。当趋于无限次数时,可理解为一个时段或时空内,将每次试验是在分割成每秒/每分等事件单位下的事件A是否发生。如下图所示。

重点:一般地,当n较大,p较小,np大小适当时,以(n,p)为参数的二项分布可近似看成参数为

的泊松分布,这样可利用泊松分布对二项分布作近似计算,实际计算时,

时近似的效果极好。

2.2 泊松分布的涵义

泊松分布是用来描述:在一个比较长的时间段(时空)里面,一个很小概率事件发生的次数。例如:一段时间内电话总台收到的来电呼叫次数;一段时间内,账户登录系统发生故障的次数;在一天内,来到商场的顾客人数;游泳池里一平方米内,从水底冒出来泡的次数等。

2.3 泊松分布X~P

用随机变量X来表示在在一段时间或时空内A事件发生的次数,其概率函数为:

,

其中

,称X服从参数为

的泊松分布(poisson distribution),记作X~P(

)。

其中期望E(X)和方差D(X)都为:

2.4 泊松分布查表得概率

例如:k=5次,

=7,依下表查的P(X=5)=0.369≈37%;

例如:k≤3次,

=4,依下表查的P(X≤3)=0.0183+0.0916+0.2381+0.4335=0.7815≈78%。

相关推荐
递归不收敛3 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记大纲
pytorch·学习·机器学习
TGITCIC3 小时前
AI Agent竞争进入下半场:模型只是入场券,系统架构决定胜负
人工智能·ai产品经理·ai产品·ai落地·大模型架构·ai架构·大模型产品
斐夷所非5 小时前
人工智能 AI. 机器学习 ML. 深度学习 DL. 神经网络 NN 的区别与联系
人工智能
递归不收敛5 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:2.4 激活函数与多类别处理
pytorch·学习·机器学习
Funny_AI_LAB7 小时前
OpenAI DevDay 2025:ChatGPT 进化为平台,开启 AI 应用新纪元
人工智能·ai·语言模型·chatgpt
深瞳智检7 小时前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
深眸财经7 小时前
机器人再冲港交所,优艾智合能否破行业困局?
人工智能·机器人
小宁爱Python8 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
新知图书8 小时前
Encoder-Decoder架构的模型简介
人工智能·架构·ai agent·智能体·大模型应用开发·大模型应用
~kiss~9 小时前
K-means损失函数-收敛证明
算法·机器学习·kmeans