多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测

目录

    • [多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测](#多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测)

预测效果





基本介绍

MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测

模型描述

MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上

1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;

2.主程序文件,运行即可;

3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;

注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复** MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测**获取。
clike 复制代码
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
机器学习之心16 天前
时序预测 | Matlab基于TSA-LSTM-Attention被囊群优化算法优化长短期记忆网络融合注意力机制多变量多步时间序列预测
时间序列预测·lstm-attention·融合注意力机制·多变量多步·tsa-lstm·被囊群优化算法优化
机器学习之心25 天前
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm
机器学习之心2 个月前
全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)
注意力机制·多变量时间序列预测·tcn-lstm·psa-tcn-lstm
scdifsn2 个月前
动手学深度学习9.1. 门控循环单元(GRU)-笔记&练习(PyTorch)
笔记·深度学习·cnn·gru·门控循环单元
机器学习之心2 个月前
多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测
支持向量机·matlab·贝叶斯优化·多变量时间序列预测·最小二乘支持向量机·bo-lssvm
百里与司空2 个月前
STM32——看门狗通俗解析
stm32·单片机·嵌入式硬件·门控循环单元
机器学习之心2 个月前
多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测
支持向量机·多变量时间序列预测·ssa-svr·麻雀算法优化支持向量机
机器学习之心2 个月前
强推!创新直发核心!时序分解+优化组合+模型对比!VMD-SSA-Transformer-BiLSTM多变量时间序列预测
transformer·bilstm·多变量时间序列预测·vmd-ssa
Francek Chen3 个月前
【机器学习-神经网络】循环神经网络
人工智能·rnn·深度学习·神经网络·机器学习·门控循环单元
机器学习之心3 个月前
时序预测 | 基于DLinear+PatchTST多变量时间序列预测模型(pytorch)
人工智能·pytorch·python·多变量时间序列预测·dlinear·patchtst