替换SlowFast中Detectron2为Yolov8

一 需求

FaceBookReserch中SlowFast源码中检测框是用Detectron2进行目标检测,本文想实现用yolov8替换detectron2

二 实施方案

首先,yolov8 支持有自定义库ultralytics(仅支持yolov8),安装对应库

bash 复制代码
pip install ultralytics

源码中slowfast/visualization.py 43行中

python 复制代码
if cfg.DETECTION.ENABLE:
       self.object_detector = Detectron2Predictor(cfg, gpu_id=self.gpu_id)

根据ultralytics文档进行定义

创建对应YOLOPredictor类(加入了检测框及其标签,具体见前一篇文章)

python 复制代码
class YOLOPredictor:

    def __init__(self, cfg, gpu_id=None):
        # 加载预训练的 YOLOv8n 模型
        self.model = YOLO('/root/autodl-tmp/data/runs/detect/train/weights/best.pt')
        self.detect_names, _, _ = get_class_names(cfg.DEMO.Detect_File_Path, None, None)

    def __call__(self, task):
        """
        Return bounding boxes predictions as a tensor.
        Args:
            task (TaskInfo object): task object that contain
                the necessary information for action prediction. (e.g. frames)
        Returns:
            task (TaskInfo object): the same task info object but filled with
                prediction values (a tensor) and the corresponding boxes for
                action detection task.
        """
        # """得到预测置信度"""
        # scores = outputs["instances"].scores[mask].tolist()
        # """获取类别标签"""
        # pred_labels = outputs["instances"].pred_classes[mask]
        # pred_labels = pred_labels.tolist()
        # """进行标签匹配"""
        # for i in range(len(pred_labels)):
        #     pred_labels[i] = self.detect_names[pred_labels[i]]
        # preds = [
        #     "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
        # ]
        # """加入预测标签"""
        # task.add_detect_preds(preds)
        # task.add_bboxes(pred_boxes)
        middle_frame = task.frames[len(task.frames) // 2]
        outputs = self.model(middle_frame)
        boxes = outputs[0].boxes
        mask = boxes.conf >= 0.5
        pred_boxes = boxes.xyxy[mask]
        scores = boxes.conf[mask].tolist()
        pred_labels = boxes.cls[mask].to(torch.int)
        pred_labels = pred_labels.tolist()
        for i in range(len(pred_labels)):
            pred_labels[i] = self.detect_names[pred_labels[i]]
        preds = [
            "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
        ]
        """加入预测标签"""
        task.add_detect_preds(preds)
        task.add_bboxes(pred_boxes)

        return task
相关推荐
数据分析能量站38 分钟前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%44 分钟前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
YangJZ_ByteMaster1 小时前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
volcanical2 小时前
Bert各种变体——RoBERTA/ALBERT/DistillBert
人工智能·深度学习·bert
知来者逆2 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
跟德姆(dom)一起学AI2 小时前
0基础跟德姆(dom)一起学AI 自然语言处理05-文本特征处理
人工智能·python·深度学习·自然语言处理
云空4 小时前
《解锁分类神经网络预训练模型的奇妙世界》
人工智能·深度学习·神经网络
啊哈哈哈哈哈啊哈哈4 小时前
P7——pytorch马铃薯病害识别
人工智能·深度学习·学习
请站在我身后4 小时前
最新的强大的文生视频模型Pyramid Flow 论文阅读及复现
论文阅读·人工智能·神经网络·计算机视觉·stable diffusion·transformer
伊一大数据&人工智能学习日志5 小时前
OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理
人工智能·opencv·计算机视觉