替换SlowFast中Detectron2为Yolov8

一 需求

复制代码
FaceBookReserch中SlowFast源码中检测框是用Detectron2进行目标检测,本文想实现用yolov8替换detectron2

二 实施方案

首先,yolov8 支持有自定义库ultralytics(仅支持yolov8),安装对应库

bash 复制代码
pip install ultralytics

源码中slowfast/visualization.py 43行中

python 复制代码
if cfg.DETECTION.ENABLE:
       self.object_detector = Detectron2Predictor(cfg, gpu_id=self.gpu_id)

根据ultralytics文档进行定义

创建对应YOLOPredictor类(加入了检测框及其标签,具体见前一篇文章)

python 复制代码
class YOLOPredictor:

    def __init__(self, cfg, gpu_id=None):
        # 加载预训练的 YOLOv8n 模型
        self.model = YOLO('/root/autodl-tmp/data/runs/detect/train/weights/best.pt')
        self.detect_names, _, _ = get_class_names(cfg.DEMO.Detect_File_Path, None, None)

    def __call__(self, task):
        """
        Return bounding boxes predictions as a tensor.
        Args:
            task (TaskInfo object): task object that contain
                the necessary information for action prediction. (e.g. frames)
        Returns:
            task (TaskInfo object): the same task info object but filled with
                prediction values (a tensor) and the corresponding boxes for
                action detection task.
        """
        # """得到预测置信度"""
        # scores = outputs["instances"].scores[mask].tolist()
        # """获取类别标签"""
        # pred_labels = outputs["instances"].pred_classes[mask]
        # pred_labels = pred_labels.tolist()
        # """进行标签匹配"""
        # for i in range(len(pred_labels)):
        #     pred_labels[i] = self.detect_names[pred_labels[i]]
        # preds = [
        #     "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
        # ]
        # """加入预测标签"""
        # task.add_detect_preds(preds)
        # task.add_bboxes(pred_boxes)
        middle_frame = task.frames[len(task.frames) // 2]
        outputs = self.model(middle_frame)
        boxes = outputs[0].boxes
        mask = boxes.conf >= 0.5
        pred_boxes = boxes.xyxy[mask]
        scores = boxes.conf[mask].tolist()
        pred_labels = boxes.cls[mask].to(torch.int)
        pred_labels = pred_labels.tolist()
        for i in range(len(pred_labels)):
            pred_labels[i] = self.detect_names[pred_labels[i]]
        preds = [
            "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
        ]
        """加入预测标签"""
        task.add_detect_preds(preds)
        task.add_bboxes(pred_boxes)

        return task
相关推荐
惯导马工9 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
xiaohouzi1122331 天前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
小关会打代码1 天前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
隐语SecretFlow1 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
天天进步20151 天前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉
荼蘼1 天前
答题卡识别改分项目
人工智能·opencv·计算机视觉
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
IT古董2 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn