替换SlowFast中Detectron2为Yolov8

一 需求

FaceBookReserch中SlowFast源码中检测框是用Detectron2进行目标检测,本文想实现用yolov8替换detectron2

二 实施方案

首先,yolov8 支持有自定义库ultralytics(仅支持yolov8),安装对应库

bash 复制代码
pip install ultralytics

源码中slowfast/visualization.py 43行中

python 复制代码
if cfg.DETECTION.ENABLE:
       self.object_detector = Detectron2Predictor(cfg, gpu_id=self.gpu_id)

根据ultralytics文档进行定义

创建对应YOLOPredictor类(加入了检测框及其标签,具体见前一篇文章)

python 复制代码
class YOLOPredictor:

    def __init__(self, cfg, gpu_id=None):
        # 加载预训练的 YOLOv8n 模型
        self.model = YOLO('/root/autodl-tmp/data/runs/detect/train/weights/best.pt')
        self.detect_names, _, _ = get_class_names(cfg.DEMO.Detect_File_Path, None, None)

    def __call__(self, task):
        """
        Return bounding boxes predictions as a tensor.
        Args:
            task (TaskInfo object): task object that contain
                the necessary information for action prediction. (e.g. frames)
        Returns:
            task (TaskInfo object): the same task info object but filled with
                prediction values (a tensor) and the corresponding boxes for
                action detection task.
        """
        # """得到预测置信度"""
        # scores = outputs["instances"].scores[mask].tolist()
        # """获取类别标签"""
        # pred_labels = outputs["instances"].pred_classes[mask]
        # pred_labels = pred_labels.tolist()
        # """进行标签匹配"""
        # for i in range(len(pred_labels)):
        #     pred_labels[i] = self.detect_names[pred_labels[i]]
        # preds = [
        #     "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
        # ]
        # """加入预测标签"""
        # task.add_detect_preds(preds)
        # task.add_bboxes(pred_boxes)
        middle_frame = task.frames[len(task.frames) // 2]
        outputs = self.model(middle_frame)
        boxes = outputs[0].boxes
        mask = boxes.conf >= 0.5
        pred_boxes = boxes.xyxy[mask]
        scores = boxes.conf[mask].tolist()
        pred_labels = boxes.cls[mask].to(torch.int)
        pred_labels = pred_labels.tolist()
        for i in range(len(pred_labels)):
            pred_labels[i] = self.detect_names[pred_labels[i]]
        preds = [
            "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
        ]
        """加入预测标签"""
        task.add_detect_preds(preds)
        task.add_bboxes(pred_boxes)

        return task
相关推荐
小菜鸟博士2 小时前
手撕Vision Transformer -- Day1 -- 基础原理
人工智能·深度学习·学习·算法·面试
老艾的AI世界2 小时前
AI定制祝福视频,广州塔、动态彩灯、LED表白,直播互动新玩法(附下载链接)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·ai视频·ai视频生成·ai视频制作
前端达人4 小时前
「AI学习笔记」深度学习进化史:从神经网络到“黑箱技术”(三)
人工智能·笔记·深度学习·神经网络·学习
深蓝海拓4 小时前
基于深度学习的视觉检测小项目(十六) 用户管理界面的组态
人工智能·python·深度学习·qt·pyqt
Icomi_4 小时前
【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙
c语言·c++·人工智能·pytorch·python·机器学习·计算机视觉
逐梦苍穹5 小时前
神经网络的数据流动过程(张量的转换和输出)
人工智能·深度学习·神经网络
我的运维人生5 小时前
计算机视觉:解锁智能时代的钥匙与实战案例
人工智能·计算机视觉·运维开发·技术共享
小周不摆烂6 小时前
解锁计算机视觉算法:从理论到代码实战
计算机视觉
我的青春不太冷6 小时前
2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
人工智能·深度学习·ncnn·mnn·在线模型转换网址