为什么Transformer模型中使用Layer Normalization(Layer Norm)而不是Batch Normalization(BN)


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


博主原文链接:https://www.yourmetaverse.cn/nlp/484/


(封面图由文心一格生成)

为什么Transformer模型中使用Layer Normalization(Layer Norm)而不是Batch Normalization(BN)

在当今深度学习的浪潮中,Transformer模型已成为自然语言处理(NLP)的一颗璀璨明星。自从其在2017年被提出以来,Transformer已在机器翻译、文本生成、语音识别等领域取得了显著成就。在深度学习模型的训练过程中,Normalization技术扮演着至关重要的角色,它不仅加速了训练过程,还提高了模型的泛化能力。在众多Normalization技术中,为何Transformer选择了Layer Normalization(Layer Norm)而非更为普遍的Batch Normalization(BN)?

Transformer架构概览

Transformer模型的核心在于其自注意力机制,该机制能够处理输入序列中不同部分之间的依赖关系。此外,多头注意力机制允许模型同时从不同的表示子空间获取信息。Normalization在这一架构中起着关键作用,它有助于维持梯度流动,避免在深层网络中出现梯度消失或爆炸的问题。

Batch Normalization(BN)简介

BN通过对每个mini-batch内的数据进行标准化来调整其均值和方差。这种技术在许多深度神经网络中都显示出显著的优势,例如加速收敛速度和减少对初始参数设置的依赖。然而,BN的有效性依赖于较大的batch大小,这在处理小批量数据或单个数据样本时成为一个限制。

Layer Normalization(Layer Norm)简介

与BN不同,Layer Norm是沿特征维度对单个数据样本进行标准化。它的一个关键优点是不依赖于batch的大小,使其适用于小批量甚至单样本的场景。这种独立于batch大小的特性使Layer Norm成为处理变长序列和小批量数据的理想选择。

为什么Transformer选择Layer Norm而不是BN

在Transformer的上下文中,Layer Norm的优势尤为明显:

  1. 计算依赖性:BN依赖于整个mini-batch的数据,这与Transformer并行处理机制的需求相悖。
  2. 序列长度变化:Transformer通常处理不同长度的序列,BN难以适应这种变化,而Layer Norm则无此问题。
  3. 训练稳定性:Layer Norm在处理变长输入时显示出更好的稳定性,这对于提高模型的泛化能力至关重要。
  4. 内存效率:处理大规模数据时,Layer Norm的内存效率优于BN,这对于构建大型模型尤为重要。

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


相关推荐
咚咚王者1 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习
逄逄不是胖胖1 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
koo3642 小时前
pytorch深度学习笔记19
pytorch·笔记·深度学习
Hello.Reader3 小时前
Flink 自适应批执行(Adaptive Batch Execution)让 Batch 作业“边跑边优化”
大数据·flink·batch
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅3 小时前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits3 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
下午写HelloWorld4 小时前
差分隐私深度学习(DP-DL)简要理解
人工智能·深度学习
deephub4 小时前
让 AI 智能体学会自我进化:Agent Lightning 实战入门
人工智能·深度学习·大语言模型·agent
Loo国昌5 小时前
【垂类模型数据工程】第四阶段:高性能 Embedding 实战:从双编码器架构到 InfoNCE 损失函数详解
人工智能·后端·深度学习·自然语言处理·架构·transformer·embedding