为什么Transformer模型中使用Layer Normalization(Layer Norm)而不是Batch Normalization(BN)


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


博主原文链接:https://www.yourmetaverse.cn/nlp/484/


(封面图由文心一格生成)

为什么Transformer模型中使用Layer Normalization(Layer Norm)而不是Batch Normalization(BN)

在当今深度学习的浪潮中,Transformer模型已成为自然语言处理(NLP)的一颗璀璨明星。自从其在2017年被提出以来,Transformer已在机器翻译、文本生成、语音识别等领域取得了显著成就。在深度学习模型的训练过程中,Normalization技术扮演着至关重要的角色,它不仅加速了训练过程,还提高了模型的泛化能力。在众多Normalization技术中,为何Transformer选择了Layer Normalization(Layer Norm)而非更为普遍的Batch Normalization(BN)?

Transformer架构概览

Transformer模型的核心在于其自注意力机制,该机制能够处理输入序列中不同部分之间的依赖关系。此外,多头注意力机制允许模型同时从不同的表示子空间获取信息。Normalization在这一架构中起着关键作用,它有助于维持梯度流动,避免在深层网络中出现梯度消失或爆炸的问题。

Batch Normalization(BN)简介

BN通过对每个mini-batch内的数据进行标准化来调整其均值和方差。这种技术在许多深度神经网络中都显示出显著的优势,例如加速收敛速度和减少对初始参数设置的依赖。然而,BN的有效性依赖于较大的batch大小,这在处理小批量数据或单个数据样本时成为一个限制。

Layer Normalization(Layer Norm)简介

与BN不同,Layer Norm是沿特征维度对单个数据样本进行标准化。它的一个关键优点是不依赖于batch的大小,使其适用于小批量甚至单样本的场景。这种独立于batch大小的特性使Layer Norm成为处理变长序列和小批量数据的理想选择。

为什么Transformer选择Layer Norm而不是BN

在Transformer的上下文中,Layer Norm的优势尤为明显:

  1. 计算依赖性:BN依赖于整个mini-batch的数据,这与Transformer并行处理机制的需求相悖。
  2. 序列长度变化:Transformer通常处理不同长度的序列,BN难以适应这种变化,而Layer Norm则无此问题。
  3. 训练稳定性:Layer Norm在处理变长输入时显示出更好的稳定性,这对于提高模型的泛化能力至关重要。
  4. 内存效率:处理大规模数据时,Layer Norm的内存效率优于BN,这对于构建大型模型尤为重要。

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


相关推荐
胡乱编胡乱赢2 分钟前
关于在pycharm终端连接服务器
人工智能·深度学习·pycharm·终端连接服务器
盼小辉丶10 分钟前
DenseNet详解与实现
深度学习·keras·tensorflow2
东方佑2 小时前
当人眼遇见神经网络:用残差结构模拟视觉调焦的奇妙类比
人工智能·深度学习·神经网络
智驱力人工智能2 小时前
深度学习在离岗检测中的应用
人工智能·深度学习·安全·视觉检测·离岗检测
hjs_deeplearning2 小时前
认知篇#12:基于非深度学习方法的图像特征提取
人工智能·深度学习·目标检测
阿杜杜不是阿木木2 小时前
开始 ComfyUI 的 AI 绘图之旅-Flux.1 ControlNet (十)
人工智能·深度学习·ai·ai作画·lora
victory04312 小时前
疾病语音数据集 WAV格式音频
深度学习·音视频
chanalbert4 小时前
信息检索技术综述:从传统稀疏检索到现代深度学习方法
人工智能·深度学习·全文检索
fsnine5 小时前
深度学习——迁移学习
人工智能·深度学习·机器学习