为什么Transformer模型中使用Layer Normalization(Layer Norm)而不是Batch Normalization(BN)


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


博主原文链接:https://www.yourmetaverse.cn/nlp/484/


(封面图由文心一格生成)

为什么Transformer模型中使用Layer Normalization(Layer Norm)而不是Batch Normalization(BN)

在当今深度学习的浪潮中,Transformer模型已成为自然语言处理(NLP)的一颗璀璨明星。自从其在2017年被提出以来,Transformer已在机器翻译、文本生成、语音识别等领域取得了显著成就。在深度学习模型的训练过程中,Normalization技术扮演着至关重要的角色,它不仅加速了训练过程,还提高了模型的泛化能力。在众多Normalization技术中,为何Transformer选择了Layer Normalization(Layer Norm)而非更为普遍的Batch Normalization(BN)?

Transformer架构概览

Transformer模型的核心在于其自注意力机制,该机制能够处理输入序列中不同部分之间的依赖关系。此外,多头注意力机制允许模型同时从不同的表示子空间获取信息。Normalization在这一架构中起着关键作用,它有助于维持梯度流动,避免在深层网络中出现梯度消失或爆炸的问题。

Batch Normalization(BN)简介

BN通过对每个mini-batch内的数据进行标准化来调整其均值和方差。这种技术在许多深度神经网络中都显示出显著的优势,例如加速收敛速度和减少对初始参数设置的依赖。然而,BN的有效性依赖于较大的batch大小,这在处理小批量数据或单个数据样本时成为一个限制。

Layer Normalization(Layer Norm)简介

与BN不同,Layer Norm是沿特征维度对单个数据样本进行标准化。它的一个关键优点是不依赖于batch的大小,使其适用于小批量甚至单样本的场景。这种独立于batch大小的特性使Layer Norm成为处理变长序列和小批量数据的理想选择。

为什么Transformer选择Layer Norm而不是BN

在Transformer的上下文中,Layer Norm的优势尤为明显:

  1. 计算依赖性:BN依赖于整个mini-batch的数据,这与Transformer并行处理机制的需求相悖。
  2. 序列长度变化:Transformer通常处理不同长度的序列,BN难以适应这种变化,而Layer Norm则无此问题。
  3. 训练稳定性:Layer Norm在处理变长输入时显示出更好的稳定性,这对于提高模型的泛化能力至关重要。
  4. 内存效率:处理大规模数据时,Layer Norm的内存效率优于BN,这对于构建大型模型尤为重要。

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


相关推荐
IT小哥哥呀几秒前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
汉堡go2 小时前
1、机器学习与深度学习
人工智能·深度学习·机器学习
LiJieNiub3 小时前
基于 PyTorch 实现 MNIST 手写数字识别
pytorch·深度学习·学习
chxin140163 小时前
Transformer注意力机制——动手学深度学习10
pytorch·rnn·深度学习·transformer
jie*3 小时前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
jie*3 小时前
小杰深度学习(sixteen)——视觉-经典神经网络——MobileNetV2
人工智能·python·深度学习·神经网络·tensorflow·numpy·matplotlib
MYX_3093 小时前
第五章 神经网络的优化
pytorch·深度学习·神经网络·学习
TGITCIC3 小时前
有趣的机器学习-利用神经网络来模拟“古龙”写作风格的输出器
人工智能·深度学习·神经网络·ai大模型·模型训练·训练模型·手搓模型
Piink4 小时前
网络模型训练完整代码
人工智能·深度学习·机器学习
淬炼之火5 小时前
基于pycharm和anaconda的yolo简单部署测试
python·深度学习·yolo·pycharm·ultralytics