hdu.Railway,点双联通分量 + 桥(割边),tarjan算法

Problem - 3394 (hdu.edu.cn)

Railway

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6294 Accepted Submission(s): 2055

Problem Description
There are some locations in a park, and some of them are connected by roads. The park manger needs to build some railways along the roads, and he would like to arrange tourist routes to each circuit. If a railway belongs to more than one tourist routes, there might be clash on it, and if a railway belongs to none tourist route, it doesn't need to build.
Now we know the plan, and can you tell us how many railways are no need to build and how many railways where clash might happen.

Input
The Input consists of multiple test cases. The first line of each test case contains two integers, n (0 < n <= 10000), m (0 <= m <= 100000), which are the number of locations and the number of the railways. The next m lines, each line contains two integers, u, v (0 <= u, v < n), which means the manger plans to build a railway on the road between u and v.
You can assume that there is no loop and no multiple edges.
The last test case is followed by two zeros on a single line, which means the end of the input.

Output
Output the number of railways that are no need to build, and the number of railways where clash might happen. Please follow the format as the sample.

Sample Input

复制代码

8 10
0 1
1 2
2 3
3 0
3 4
4 5
5 6
6 7
7 4
5 7
0 0

Sample Output

复制代码

1 5

Author
momodi@whu

题解

对于一个点双联通子图,如果边的个数等于点的个数,那么该点双联通子图刚好形成一个环;如果边的个数大于点的个数,那么该点双联通子图至少存在三个环,且每一条边都至少存在于两个环中,所以该子图的所有边都为冲突边

桥为多余的边

注意:这道题中会有重边

cpp 复制代码
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
using namespace std;
typedef long long LL;
const int N = 1e4 + 5, M = 2e5 + 5;
int n, m;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;
int id[N], siz[N],  dcc_cnt;
int ans1,ans;
stack<pair<int,int>>st;
set<int>pos[N];


void add(int a, int b) {
	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void tarjan(int u,int fa) {
	dfn[u] = low[u] = ++timestamp;
	for (int i = h[u]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!dfn[j]) {
			st.push({u,j});
			tarjan(j, i);
			low[u] = min(low[u], low[j]);
			if (low[j] >= dfn[u]) {
				dcc_cnt++;
				id[u] = dcc_cnt;
				pos[dcc_cnt].clear();
				while (1)
				{
					auto t = st.top();
					st.pop();
					siz[dcc_cnt]++;//存某个连通图中的边数
					pos[dcc_cnt].insert(t.first), pos[dcc_cnt].insert(t.second);//存编号为i的连通图中包含的点数
					if (u == t.first && j == t.second)break;
				}
			}
			if (dfn[u] <low[j]) {
				ans1++;
			}
		}
		else if (i != (fa ^ 1) && dfn[j] < dfn[u]) {
			st.push({ u,j });
			low[u] = min(low[u], dfn[j]);
		}
	}
}

int main() {
	while (cin >> n >> m,n||m) {
		memset(h, -1, sizeof h);
		memset(dfn, 0, sizeof dfn);
		memset(siz, 0, sizeof siz);
		idx = timestamp = dcc_cnt = ans1 = ans = 0;
		for (int i = 1,a,b; i <= m; i++) {
			scanf("%d%d", &a, &b);
			add(a, b), add(b, a);
		}
		for (int i = 0; i < n; i++) {
			if (!dfn[i])
				tarjan(i,-1);
		}
		for (int i = 1; i <= dcc_cnt; i++) {
			if (siz[i] > pos[i].size()) {
				ans += siz[i];
			}
		}
		cout << ans1 << " " << ans << endl;
	}
	return 0;
}
相关推荐
CoovallyAIHub几秒前
如何在 2025 年构建强大的实时视频检测?
深度学习·算法·计算机视觉
CoovallyAIHub24 分钟前
2025 年度 AI 行业百科《State of AI 2025》来了!推理元年、算力焦虑与价值回归
深度学习·算法·计算机视觉
寒冬没有雪43 分钟前
矩阵的翻转与旋转
c++·算法·矩阵
ʚ希希ɞ ྀ44 分钟前
二叉树的层序遍历
数据结构·算法
m0_7431064644 分钟前
【VGGT-X】:尝试将VGGT用到3DGS重建中去
人工智能·算法·计算机视觉·3d·几何学
十二imin1 小时前
霍夫丁不等式详解
算法·机器学习·概率论
Giser探索家1 小时前
建筑物孪生模型:重构空间数字化格局,赋能智慧城市
大数据·人工智能·算法·重构·分类·云计算·智慧城市
Tiny番茄1 小时前
leetcode 3. 无重复字符的最长子串
数据结构·python·算法·leetcode
WHS-_-20225 小时前
A Density Clustering-Based CFAR Algorithm for Ship Detection in SAR Images
算法·5g
Miraitowa_cheems7 小时前
LeetCode算法日记 - Day 68: 猜数字大小II、矩阵中的最长递增路径
数据结构·算法·leetcode·职场和发展·贪心算法·矩阵·深度优先