6.9平衡二叉树(LC110-E)

绝对值函数:abs()

算法:

高度和深度的区别:

节点的高度:节点到叶子节点的距离(从下往上)

节点的深度:节点到根节点的距离(从上往下)

逻辑:一个平衡二叉树的每个节点的左右子树都是平衡二叉树

调试过程:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        if self.getheight(root) == 0:
            return True
        else:
            return False

    def getheight(self, node) -> int:
        if node == None:
            return 0        
        leftheight = self.getheight(node.left)
        rightheight = self.getheight(node.right)
        #左子树若有不平衡的,就返回-1
        if leftheight == -1:
            return -1
        #右子树若有不平衡的,就返回-1
        if rightheight == -1:
            return -1
        
        if abs(leftheight-rightheight)>1:
            return -1
        else:
            return 0

原因:问题出在return 0上面,改成return 1 + max(leftheight, rightheight)就好了

**`return 0`**的含义是将节点的高度设置为0,这是不正确的。

正确的做法是使用**`return 1 + max(leftheight, rightheight)`** 来计算节点的高度。这里的**`max(leftheight, rightheight)`**表示选择左子树和右子树中较大的高度作为当前节点的高度,然后再加上1,表示当前节点的高度。

通过这种方式,我们可以确保节点的高度正确地传递到父节点 ,并在比较节点的高度差时得到正确的结果 。如果节点的左子树和右子树高度差超过1,那么在递归过程中会返回-1,最终导致**`isBalanced`**函数返回False。

正确代码:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        if self.getheight(root) != -1:
            return True
        else:
            return False

    def getheight(self, node) -> int:
        if node == None:
            return 0        
        leftheight = self.getheight(node.left)
        rightheight = self.getheight(node.right)
        #左子树若有不平衡的,就返回-1
        if leftheight == -1:
            return -1
        #右子树若有不平衡的,就返回-1
        if rightheight == -1:
            return -1
        
        if abs(leftheight-rightheight)>1:
            return -1
        else:
            return 1 + max(leftheight, rightheight)

时间空间复杂度:

时间复杂度:

  • `isBalanced`函数中,我们调用了`getheight`函数来计算每个节点的高度。在最坏情况下,需要遍历二叉树的所有节点,因此时间复杂度为O(n),其中n是二叉树中的节点数。
  • `getheight`函数是一个递归函数,它会遍历二叉树的所有节点。对于每个节点,我们需要递归地计算其左子树和右子树的高度,因此总的时间复杂度也是O(n)。
  • 综上所述,整个算法的时间复杂度为O(n)。

空间复杂度:

  • 在`getheight`函数中,递归调用会产生函数调用栈。在最坏情况下,二叉树是一个完全不平衡的树,即链表形式,此时递归的深度为n,因此空间复杂度为O(n)。
  • 综上所述,整个算法的空间复杂度为O(n)。
相关推荐
羊小猪~~1 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
晨曦_子画7 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
Black_Friend15 分钟前
关于在VS中使用Qt不同版本报错的问题
开发语言·qt
放飞自我的Coder31 分钟前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词
希言JY39 分钟前
C字符串 | 字符串处理函数 | 使用 | 原理 | 实现
c语言·开发语言
残月只会敲键盘39 分钟前
php代码审计--常见函数整理
开发语言·php
xianwu54339 分钟前
反向代理模块
linux·开发语言·网络·git
ktkiko111 小时前
Java中的远程方法调用——RPC详解
java·开发语言·rpc
正义的彬彬侠1 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn
张小生1801 小时前
PyCharm中 argparse 库 的使用方法
python·pycharm