xlua源码分析(三)C#访问lua的映射

xlua源码分析(三)C#访问lua的映射

上一节我们主要分析了lua call C#的无wrap实现。同时我们在第一节里提到过,C#使用LuaTable类持有lua层的table,以及使用Action委托持有lua层的function。而在xlua的官方文档中,推荐使用interface和delegate访问lua层数据结构:

映射到一个interface

这种方式依赖于生成代码(如果没生成代码会抛InvalidCastException异常),代码生成器会生成这个interface的实例,如果get一个属性,生成代码会get对应的table字段,如果set属性也会设置对应的字段。甚至可以通过interface的方法访问lua的函数。

映射到delegate

这种是建议的方式,性能好很多,而且类型安全。缺点是要生成代码(如果没生成代码会抛InvalidCastException异常)。

delegate要怎样声明呢? 对于function的每个参数就声明一个输入类型的参数。 多返回值要怎么处理?从左往右映射到c#的输出参数,输出参数包括返回值,out参数,ref参数。

参数、返回值类型支持哪些呢?都支持,各种复杂类型,out,ref修饰的,甚至可以返回另外一个delegate。

delegate的使用就更简单了,直接像个函数那样用就可以了。

那么这一节我们就对照着Examples 04_LuaObjectOrented,来看一下如何把包含任意数据的lua table和包含任意参数的lua function映射到C#,让C#可以直接访问。

首先看一下例子中用到的lua代码:

lua 复制代码
local calc_mt = {
    __index = {
        Add = function(self, a, b)
            return (a + b) * self.Mult
        end,
        
        get_Item = function(self, index)
            return self.list[index + 1]
        end,

        set_Item = function(self, index, value)
            self.list[index + 1] = value
            self:notify({name = index, value = value})
        end,
        
        add_PropertyChanged = function(self, delegate)
            if self.notifylist == nil then
                self.notifylist = {}
            end
            table.insert(self.notifylist, delegate)
            print('add',delegate)
        end,
                                
        remove_PropertyChanged = function(self, delegate)
            for i=1, #self.notifylist do
                if CS.System.Object.Equals(self.notifylist[i], delegate) then
                    table.remove(self.notifylist, i)
                    break
                end
            end
            print('remove', delegate)
        end,

        notify = function(self, evt)
            if self.notifylist ~= nil then
                for i=1, #self.notifylist do
                    self.notifylist[i](self, evt)
                end
            end	
        end,
    }
}

Calc = {
    New = function (mult, ...)
        print(...)
        return setmetatable({Mult = mult, list = {'aaaa','bbbb','cccc'}}, calc_mt)
    end
}

这个例子很简单,就是定义了一个Calc.New的函数,这个函数会使用传入的参数构建一个新的table,并设置calc_mt作为它的metatable。calc_mt的__index表中定义了若干供C#访问的函数,如Addget_Itemset_Itemadd_PropertyChangedremove_PropertyChanged

回到C#,C#层如果想要访问lua层的Calc.New,就需要定义一个和该函数匹配的委托。这个委托定义如下:

c# 复制代码
[CSharpCallLua]
public delegate ICalc CalcNew(int mult, params string[] args);

委托有一个int类型的参数mult和不定数量的string类型参数args,int和string类型都可以很容易地从C#类型转换到对应的lua类型。再看返回值,这里的返回类型是一个ICalc的interface,它其实映射就是lua层的table,也就是Calc.New所返回的那个table。为了让xlua识别CalcNew这个委托类型是用来映射lua函数的,也就是要使用这个委托调用lua层函数,需要给CalcNew类型打上CSharpCallLua的标签,这样xlua就会生成代码来完成这一工作。

映射lua table的ICalc定义如下:

c# 复制代码
[CSharpCallLua]
public interface ICalc
{
    event EventHandler<PropertyChangedEventArgs> PropertyChanged;

    int Add(int a, int b);
    int Mult { get; set; }

    object this[int index] { get; set; }
}

接口类中包含了一个PropertyChanged的event,一个Add方法,一个Multi属性,还实现了下标操作符。那么想必大家都能猜出来,这里就是分别对应了lua层calc_mt的__index表中定义的若干函数。同样地,我们也需要为这个interface打上[CSharpCallLua]标签,这样xlua就会生成一个具体实现该接口的类。

在理解映射思路之后,我们再看下测试代码:

c# 复制代码
void Test(LuaEnv luaenv)
{
    luaenv.DoString(script);
    CalcNew calc_new = luaenv.Global.GetInPath<CalcNew>("Calc.New");
    ICalc calc = calc_new(10, "hi", "john"); //constructor
    Debug.Log("sum(*10) =" + calc.Add(1, 2));
    calc.Mult = 100;
    Debug.Log("sum(*100)=" + calc.Add(1, 2));

    Debug.Log("list[0]=" + calc[0]);
    Debug.Log("list[1]=" + calc[1]);

    calc.PropertyChanged += Notify;
    calc[1] = "dddd";
    Debug.Log("list[1]=" + calc[1]);

    calc.PropertyChanged -= Notify;

    calc[1] = "eeee";
    Debug.Log("list[1]=" + calc[1]);
}

void Notify(object sender, PropertyChangedEventArgs e)
{
    Debug.Log(string.Format("{0} has property changed {1}={2}", sender, e.name, e.value));
}

运行之后输出结果如下:

可以看到,我们通过映射的方式,访问到了lua的函数和table,而且很重要的一点是,测试代码中C#和lua实现了解耦,这种做法也是xlua的官方文档中所推荐的:

使用建议

  1. 访问lua全局数据,特别是table以及function,代价比较大,建议尽量少做,比如在初始化时把要调用的lua function获取一次(映射到delegate)后,保存下来,后续直接调用该delegate即可。table也类似。
  2. 如果lua侧的实现的部分都以delegate和interface的方式提供,使用方可以完全和xLua解耦:由一个专门的模块负责xlua的初始化以及delegate、interface的映射,然后把这些delegate和interface设置到要用到它们的地方。

那么现在,我们开始,跟着测试代码,一步步地研究背后的实现吧。

第一步,就是调用了GetInPath,通过变量的名称获取到lua函数,再将其转换为CalcNew委托类型:

c# 复制代码
public T GetInPath<T>(string path)
{
#if THREAD_SAFE || HOTFIX_ENABLE
    lock (luaEnv.luaEnvLock)
    {
#endif
        var L = luaEnv.L;
        var translator = luaEnv.translator;
        int oldTop = LuaAPI.lua_gettop(L);
        LuaAPI.lua_getref(L, luaReference);
        if (0 != LuaAPI.xlua_pgettable_bypath(L, -1, path))
        {
            luaEnv.ThrowExceptionFromError(oldTop);
        }
        LuaTypes lua_type = LuaAPI.lua_type(L, -1);
        if (lua_type == LuaTypes.LUA_TNIL && typeof(T).IsValueType())
        {
            throw new InvalidCastException("can not assign nil to " + typeof(T).GetFriendlyName());
        }

        T value;
        try
        {
            translator.Get(L, -1, out value);
        }
        catch (Exception e)
        {
            throw e;
        }
        finally
        {
            LuaAPI.lua_settop(L, oldTop);
        }
        return value;
#if THREAD_SAFE || HOTFIX_ENABLE
    }
#endif
}

重点需要关注的其实就是这句translator.Get(L, -1, out value);,它负责对lua栈上的函数进行类型转换。这个委托类型并不是实现注册好的类型,那么就会走到通用的GetObject函数:

c# 复制代码
public void Get<T>(RealStatePtr L, int index, out T v)
{
    Func<RealStatePtr, int, T> get_func;
    if (tryGetGetFuncByType(typeof(T), out get_func))
    {
        v = get_func(L, index);
    }
    else
    {
        v = (T)GetObject(L, index, typeof(T));
    }
}

这个GetObject函数我们在前面的章节中也分析过,对于不是userdata的lua对象,它会寻找一个caster函数进行转换,如果找不到,则会通过一系列规则生成一个caster:

c# 复制代码
public ObjectCast GetCaster(Type type)
{
    if (type.IsByRef) type = type.GetElementType();

    Type underlyingType = Nullable.GetUnderlyingType(type);
    if (underlyingType != null)
    {
        return genNullableCaster(GetCaster(underlyingType)); 
    }
    ObjectCast oc;
    if (!castersMap.TryGetValue(type, out oc))
    {
        oc = genCaster(type);
        castersMap.Add(type, oc);
    }
    return oc;
}

这里的委托类型是我们自定义的,默认的castersMap中显然不包含,那么xlua就会为我们生成一个:

c# 复制代码
ObjectCast fixTypeGetter = (RealStatePtr L, int idx, object target) =>
{
    if (LuaAPI.lua_type(L, idx) == LuaTypes.LUA_TUSERDATA)
    {
        object obj = translator.SafeGetCSObj(L, idx);
        return (obj != null && type.IsAssignableFrom(obj.GetType())) ? obj : null;
    }
    return null;
}; 

if (typeof(Delegate).IsAssignableFrom(type))
{
    return (RealStatePtr L, int idx, object target) =>
    {
        object obj = fixTypeGetter(L, idx, target);
        if (obj != null) return obj;

        if (!LuaAPI.lua_isfunction(L, idx))
        {
            return null;
        }

        return translator.CreateDelegateBridge(L, type, idx);
    };
}

这里的关键也是在translator.CreateDelegateBridge这句,这个函数之前我们也分析过,它负责生成一个DelegateBridge对象。这个对象就是指代lua函数用的,它自身可以与多个C#的委托绑定。

c# 复制代码
bridge = new DelegateBridge(reference, luaEnv);
try {
    var ret = getDelegate(bridge, delegateType);
    bridge.AddDelegate(delegateType, ret);
    delegate_bridges[reference] = new WeakReference(bridge);
    return ret;
}
catch(Exception e)
{
    bridge.Dispose();
    throw e;
}

getDelegate这个函数,会根据传入的delegateType,调用DelegateBridgeBase.GetDelegateByType生成对应类型的Delegate对象,它是个virtual方法,我们在生成代码之后,就会产生继承自它的DelegateBridge.GetDelegateByTypeoverride方法,这段生成代码位于DelegatesGenBridge.cs这个文件里:

c# 复制代码
public partial class DelegateBridge : DelegateBridgeBase
{
    public override Delegate GetDelegateByType(Type type)
    {
        if (type == typeof(System.Action))
        {
            return new System.Action(__Gen_Delegate_Imp0);
        }

        if (type == typeof(UnityEngine.Events.UnityAction))
        {
            return new UnityEngine.Events.UnityAction(__Gen_Delegate_Imp0);
        }

        if (type == typeof(System.Func<double, double, double>))
        {
            return new System.Func<double, double, double>(__Gen_Delegate_Imp1);
        }

        if (type == typeof(System.Action<string>))
        {
            return new System.Action<string>(__Gen_Delegate_Imp2);
        }

        if (type == typeof(System.Action<double>))
        {
            return new System.Action<double>(__Gen_Delegate_Imp3);
        }

        if (type == typeof(XLuaTest.IntParam))
        {
            return new XLuaTest.IntParam(__Gen_Delegate_Imp4);
        }

        if (type == typeof(XLuaTest.Vector3Param))
        {
            return new XLuaTest.Vector3Param(__Gen_Delegate_Imp5);
        }

        if (type == typeof(XLuaTest.CustomValueTypeParam))
        {
            return new XLuaTest.CustomValueTypeParam(__Gen_Delegate_Imp6);
        }

        if (type == typeof(XLuaTest.EnumParam))
        {
            return new XLuaTest.EnumParam(__Gen_Delegate_Imp7);
        }

        if (type == typeof(XLuaTest.DecimalParam))
        {
            return new XLuaTest.DecimalParam(__Gen_Delegate_Imp8);
        }

        if (type == typeof(XLuaTest.ArrayAccess))
        {
            return new XLuaTest.ArrayAccess(__Gen_Delegate_Imp9);
        }

        if (type == typeof(System.Action<bool>))
        {
            return new System.Action<bool>(__Gen_Delegate_Imp10);
        }

        if (type == typeof(Tutorial.CSCallLua.FDelegate))
        {
            return new Tutorial.CSCallLua.FDelegate(__Gen_Delegate_Imp11);
        }

        if (type == typeof(Tutorial.CSCallLua.GetE))
        {
            return new Tutorial.CSCallLua.GetE(__Gen_Delegate_Imp12);
        }

        if (type == typeof(XLuaTest.InvokeLua.CalcNew))
        {
            return new XLuaTest.InvokeLua.CalcNew(__Gen_Delegate_Imp13);
        }

        return null;
    }
}

得到Delegate之后,这里会将其进行缓存,这样下次遇到相同类型直接取出该委托即可。DelegateBridgeBase类缓存Delegate的数据结构比较有意思,它有一对firstKey和firstValue,然后一个Dictionary<Type, Delegate>的字典所组成,缓存时会优先将数据保存到firstKey和firstValue上,这样取出的时候就无需对字典进行查找,查找效率更高。

c# 复制代码
public bool TryGetDelegate(Type key, out Delegate value)
{
    if(key == firstKey)
    {
        value = firstValue;
        return true;
    }
    if (bindTo != null)
    {
        return bindTo.TryGetValue(key, out value);
    }
    value = null;
    return false;
}

public void AddDelegate(Type key, Delegate value)
{
    if (key == firstKey)
    {
        throw new ArgumentException("An element with the same key already exists in the dictionary.");
    }

    if (firstKey == null && bindTo == null) // nothing 
    {
        firstKey = key;
        firstValue = value;
    }
    else if (firstKey != null && bindTo == null) // one key existed
    {
        bindTo = new Dictionary<Type, Delegate>();
        bindTo.Add(firstKey, firstValue);
        firstKey = null;
        firstValue = null;
        bindTo.Add(key, value);
    }
    else
    {
        bindTo.Add(key, value);
    }
}

就这样,这个新生成的委托经过辗转终于返回到了测试代码,也就是calc_new对象,那么我们就可以直接通过委托的方式调用它,此时就会触发生成的__Gen_Delegate_Imp13函数了,我们来看看生成的代码长什么样:

c# 复制代码
public XLuaTest.InvokeLua.ICalc __Gen_Delegate_Imp13(int p0, string[] p1)
{
#if THREAD_SAFE || HOTFIX_ENABLE
    lock (luaEnv.luaEnvLock)
    {
#endif
        RealStatePtr L = luaEnv.rawL;
        int errFunc = LuaAPI.pcall_prepare(L, errorFuncRef, luaReference);
        ObjectTranslator translator = luaEnv.translator;
        LuaAPI.xlua_pushinteger(L, p0);
        if (p1 != null)  { for (int __gen_i = 0; __gen_i < p1.Length; ++__gen_i) LuaAPI.lua_pushstring(L, p1[__gen_i]); };
        
        PCall(L, 1 + (p1 == null ? 0 : p1.Length), 1, errFunc);
        
        
        XLuaTest.InvokeLua.ICalc __gen_ret = (XLuaTest.InvokeLua.ICalc)translator.GetObject(L, errFunc + 1, typeof(XLuaTest.InvokeLua.ICalc));
        LuaAPI.lua_settop(L, errFunc - 1);
        return  __gen_ret;
#if THREAD_SAFE || HOTFIX_ENABLE
    }
#endif
}

代码逻辑很简单,就是准备调用环境,然后把C#的参数push到lua层,然后pcall调用,然后从lua栈中取出返回的结果,由于lua是弱类型的,无法事先知道返回值的类型,所以这里只能使用通用的GetObject函数对lua的返回值进行类型转换。

同样,ICalc类型是我们自定义的,默认的castersMap是不包含的,也需要生成一个caster:

c# 复制代码
return (RealStatePtr L, int idx, object target) =>
{
    object obj = fixTypeGetter(L, idx, target);
    if (obj != null) return obj;

    if (!LuaAPI.lua_istable(L, idx))
    {
        return null;
    }
    return translator.CreateInterfaceBridge(L, type, idx);
};

那么,这里的关键就是在translator.CreateInterfaceBridge上了,与委托非常类似,这里会根据interface的类型,寻找负责生成interface对象的函数:

c# 复制代码
public object CreateInterfaceBridge(RealStatePtr L, Type interfaceType, int idx)
{
    Func<int, LuaEnv, LuaBase> creator;

    if (!interfaceBridgeCreators.TryGetValue(interfaceType, out creator))
    {
#if (UNITY_EDITOR || XLUA_GENERAL) && !NET_STANDARD_2_0
        var bridgeType = ce.EmitInterfaceImpl(interfaceType);
        creator = (int reference, LuaEnv luaenv) =>
        {
            return Activator.CreateInstance(bridgeType, new object[] { reference, luaEnv }) as LuaBase;
        };
        interfaceBridgeCreators.Add(interfaceType, creator);
#else
        throw new InvalidCastException("This type must add to CSharpCallLua: " + interfaceType);
#endif
    }
    LuaAPI.lua_pushvalue(L, idx);
    return creator(LuaAPI.luaL_ref(L), luaEnv);
}

往interfaceBridgeCreators注册creator的逻辑就是在生成代码中完成的,位于XLuaGenAutoRegister.cs中:

c# 复制代码
static void Init(LuaEnv luaenv, ObjectTranslator translator)
{
    
    wrapInit0(luaenv, translator);
    
    
    translator.AddInterfaceBridgeCreator(typeof(System.Collections.IEnumerator), SystemCollectionsIEnumeratorBridge.__Create);
    
    translator.AddInterfaceBridgeCreator(typeof(XLuaTest.IExchanger), XLuaTestIExchangerBridge.__Create);
    
    translator.AddInterfaceBridgeCreator(typeof(Tutorial.CSCallLua.ItfD), TutorialCSCallLuaItfDBridge.__Create);
    
    translator.AddInterfaceBridgeCreator(typeof(XLuaTest.InvokeLua.ICalc), XLuaTestInvokeLuaICalcBridge.__Create);
    
}

XLuaTestInvokeLuaICalcBridge是继承自ICalc接口的类,它负责实现ICalc的功能,也就是我们一开始提到的一个PropertyChanged的event +=和-=操作,一个Add方法,一个Multi属性,以及下标操作符。__Create方法就是简单了返回了一个XLuaTestInvokeLuaICalcBridge对象:

c# 复制代码
public class XLuaTestInvokeLuaICalcBridge : LuaBase, XLuaTest.InvokeLua.ICalc
{
    public static LuaBase __Create(int reference, LuaEnv luaenv)
    {
        return new XLuaTestInvokeLuaICalcBridge(reference, luaenv);
    }
}

有了ICalc对象后,我们再次回到例子中,例子中接下来调用了Add方法与Multi的set属性,XLuaTestInvokeLuaICalcBridge类对它们的实现都比较简单,这里就不再赘述了。接下来是下标访问,对于get来说会去尝试访问lua层的get_item函数,而对于set来说则会去访问lua层的set_item函数。例子里还往PropertyChanged事件中注册了一个Notify方法,这时则会触发lua层的add_PropertyChanged函数,把C#的Notify方法push到lua层。

上一节我们提到,把C#对象push到lua层时,会调用到xlua的getTypeId方法,用来获取表示对象类的唯一ID,对于Notify方法来说,它就是一个委托,而委托实质上使用的是同一个type id:

c# 复制代码
if (typeof(MulticastDelegate).IsAssignableFrom(type))
{
    if (common_delegate_meta == -1) throw new Exception("Fatal Exception! Delegate Metatable not inited!");
    TryDelayWrapLoader(L, type);
    return common_delegate_meta;
}

TryDelayWrapLoader我们上一节分析过,这里就不展开了,由于没有wrap,还是通过反射生成类的各种table。最终lua层缓存了一个表示C# Notify方法的userdata。

此时再对table进行set_item,就会触发Notify方法调用了,对于delegate来说,xlua在初始化时就往metatable里设置了__call元方法:

c# 复制代码
public void CreateDelegateMetatable(RealStatePtr L)
{
    Utils.BeginObjectRegister(null, L, this, 3, 0, 0, 0, common_delegate_meta);
    Utils.RegisterFunc(L, Utils.OBJ_META_IDX, "__call", StaticLuaCallbacks.DelegateCall);
    Utils.RegisterFunc(L, Utils.OBJ_META_IDX, "__add", StaticLuaCallbacks.DelegateCombine);
    Utils.RegisterFunc(L, Utils.OBJ_META_IDX, "__sub", StaticLuaCallbacks.DelegateRemove);
    Utils.EndObjectRegister(null, L, this, null, null,
            typeof(System.MulticastDelegate), null, null);
}

[MonoPInvokeCallback(typeof(LuaCSFunction))]
public static int DelegateCall(RealStatePtr L)
{
    try
    {
        ObjectTranslator translator = ObjectTranslatorPool.Instance.Find(L);
        object objDelegate = translator.FastGetCSObj(L, 1);
        if (objDelegate == null || !(objDelegate is Delegate))
        {
            return LuaAPI.luaL_error(L, "trying to invoke a value that is not delegate nor callable");
        }
        return translator.methodWrapsCache.GetDelegateWrap(objDelegate.GetType())(L);
    }
    catch (Exception e)
    {
        return LuaAPI.luaL_error(L, "c# exception in DelegateCall:" + e);
    }
}

GetDelegateWrap方法就是根据委托的类型,反射取出它的Inovke方法,然后包装到MethodWrap的Call方法中,进行最终的反射调用。

相关推荐
△曉風殘月〆6 小时前
WPF MVVM入门系列教程(二、依赖属性)
c#·wpf·mvvm
逐·風8 小时前
unity关于自定义渲染、内存管理、性能调优、复杂物理模拟、并行计算以及插件开发
前端·unity·c#
m0_6569747411 小时前
C#中的集合类及其使用
开发语言·c#
九鼎科技-Leo11 小时前
了解 .NET 运行时与 .NET 框架:基础概念与相互关系
windows·c#·.net
红黑色的圣西罗13 小时前
Lua 怎么解决闭包内存泄漏问题
开发语言·lua
九鼎科技-Leo14 小时前
什么是 ASP.NET Core?与 ASP.NET MVC 有什么区别?
windows·后端·c#·asp.net·mvc·.net
.net开发14 小时前
WPF怎么通过RestSharp向后端发请求
前端·c#·.net·wpf
小乖兽技术14 小时前
C#与C++交互开发系列(二十):跨进程通信之共享内存(Shared Memory)
c++·c#·交互·ipc
幼儿园园霸柒柒15 小时前
第七章: 7.3求一个3*3的整型矩阵对角线元素之和
c语言·c++·算法·矩阵·c#·1024程序员节
平凡シンプル17 小时前
C# EF 使用
c#