Video Summarise 入门

Video Summarise 入门

  • Definition
  • [Achieve method](#Achieve method)
  • [What can chatgpt do for Video Summarise?](#What can chatgpt do for Video Summarise?)
  • Literatures

Definition

"Video summarization" refers to the process of creating a concise and condensed representation of a video, capturing its essential content, key events, or highlights. The goal is to provide a shorter version of the video that retains its most important information, making it more accessible for viewers and easier to comprehend.

Achieve method

Video summarization can be achieved using various techniques, including:

  1. Keyframe Extraction: Selecting representative frames from the video to create a summary.

  2. Shot Boundary Detection: Identifying transitions between shots to divide the video into segments.

  3. Object or Activity Recognition: Using computer vision algorithms to recognize and highlight important objects or activities in the video.

  4. Temporal Sub-sampling: Selecting specific segments of the video to include in the summary while maintaining the temporal flow.

  5. Clustering and Classification: Grouping similar frames or shots together and selecting representative clusters.

The aim is to create a condensed version that captures the essence of the video, making it more manageable for users to review or comprehend the content without watching the entire video.

What can chatgpt do for Video Summarise?

  1. Textual Summaries: You can provide a description or transcript of the video to ChatGPT, and it can generate a concise summary based on the input.

  2. Clarification: If there are specific points in the video that need clarification or more context, you can ask ChatGPT for additional information.

  3. Question-Answering: If you have questions about specific details in the video, you can ask ChatGPT for answers, helping you understand and summarize the content.

  4. Scripting Assistance: If you're creating a script for a video summary, ChatGPT can help generate or refine the script based on your input.

Literatures

Title Year Publication
Video Summarise Using Deep Neural Networks: A surey 2021 IEEE
相关推荐
Coding茶水间6 分钟前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
梵得儿SHI12 分钟前
AI Agent 深度解析:高级架构、优化策略与行业实战指南(多智能体 + 分层决策 + 人类在环)
人工智能·多智能体系统·aiagent·分层决策系统·人类在环机制·agent系统完整解决方案·aiagent底层原理
Peter_Monster30 分钟前
大语言模型(LLM)架构核心解析(干货篇)
人工智能·语言模型·架构
Ma0407131 小时前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
cooldream20091 小时前
LlamaIndex 存储体系深度解析
人工智能·rag·llamaindex
Elastic 中国社区官方博客1 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
知识浅谈1 小时前
我用Gemini3pro 造了个手控全息太阳系
人工智能
孤廖1 小时前
终极薅羊毛指南:CLI工具免费调用MiniMax-M2/GLM-4.6/Kimi-K2-Thinking全流程
人工智能·经验分享·chatgpt·ai作画·云计算·无人机·文心一言
aneasystone本尊1 小时前
学习 LiteLLM 的日志系统
人工智能
秋邱1 小时前
价值升维!公益赋能 + 绿色技术 + 终身学习,构建可持续教育 AI 生态
网络·数据库·人工智能·redis·python·学习·docker