Video Summarise 入门

Video Summarise 入门

  • Definition
  • [Achieve method](#Achieve method)
  • [What can chatgpt do for Video Summarise?](#What can chatgpt do for Video Summarise?)
  • Literatures

Definition

"Video summarization" refers to the process of creating a concise and condensed representation of a video, capturing its essential content, key events, or highlights. The goal is to provide a shorter version of the video that retains its most important information, making it more accessible for viewers and easier to comprehend.

Achieve method

Video summarization can be achieved using various techniques, including:

  1. Keyframe Extraction: Selecting representative frames from the video to create a summary.

  2. Shot Boundary Detection: Identifying transitions between shots to divide the video into segments.

  3. Object or Activity Recognition: Using computer vision algorithms to recognize and highlight important objects or activities in the video.

  4. Temporal Sub-sampling: Selecting specific segments of the video to include in the summary while maintaining the temporal flow.

  5. Clustering and Classification: Grouping similar frames or shots together and selecting representative clusters.

The aim is to create a condensed version that captures the essence of the video, making it more manageable for users to review or comprehend the content without watching the entire video.

What can chatgpt do for Video Summarise?

  1. Textual Summaries: You can provide a description or transcript of the video to ChatGPT, and it can generate a concise summary based on the input.

  2. Clarification: If there are specific points in the video that need clarification or more context, you can ask ChatGPT for additional information.

  3. Question-Answering: If you have questions about specific details in the video, you can ask ChatGPT for answers, helping you understand and summarize the content.

  4. Scripting Assistance: If you're creating a script for a video summary, ChatGPT can help generate or refine the script based on your input.

Literatures

Title Year Publication
Video Summarise Using Deep Neural Networks: A surey 2021 IEEE
相关推荐
菜狗woc7 分钟前
opencv-python的简单练习
人工智能·python·opencv
15年网络推广青哥11 分钟前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
weixin_3875456430 分钟前
探索 AnythingLLM:借助开源 AI 打造私有化智能知识库
人工智能
engchina1 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin2 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
OpenCSG2 小时前
CSGHub开源版本v1.2.0更新
人工智能
weixin_515202492 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔2 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
机器之心3 小时前
图学习新突破:一个统一框架连接空域和频域
人工智能·后端
AI视觉网奇3 小时前
人脸生成3d模型 Era3D
人工智能·计算机视觉