Video Summarise 入门

Video Summarise 入门

  • Definition
  • [Achieve method](#Achieve method)
  • [What can chatgpt do for Video Summarise?](#What can chatgpt do for Video Summarise?)
  • Literatures

Definition

"Video summarization" refers to the process of creating a concise and condensed representation of a video, capturing its essential content, key events, or highlights. The goal is to provide a shorter version of the video that retains its most important information, making it more accessible for viewers and easier to comprehend.

Achieve method

Video summarization can be achieved using various techniques, including:

  1. Keyframe Extraction: Selecting representative frames from the video to create a summary.

  2. Shot Boundary Detection: Identifying transitions between shots to divide the video into segments.

  3. Object or Activity Recognition: Using computer vision algorithms to recognize and highlight important objects or activities in the video.

  4. Temporal Sub-sampling: Selecting specific segments of the video to include in the summary while maintaining the temporal flow.

  5. Clustering and Classification: Grouping similar frames or shots together and selecting representative clusters.

The aim is to create a condensed version that captures the essence of the video, making it more manageable for users to review or comprehend the content without watching the entire video.

What can chatgpt do for Video Summarise?

  1. Textual Summaries: You can provide a description or transcript of the video to ChatGPT, and it can generate a concise summary based on the input.

  2. Clarification: If there are specific points in the video that need clarification or more context, you can ask ChatGPT for additional information.

  3. Question-Answering: If you have questions about specific details in the video, you can ask ChatGPT for answers, helping you understand and summarize the content.

  4. Scripting Assistance: If you're creating a script for a video summary, ChatGPT can help generate or refine the script based on your input.

Literatures

Title Year Publication
Video Summarise Using Deep Neural Networks: A surey 2021 IEEE
相关推荐
阡之尘埃1 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力3 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20213 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧34 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽4 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_4 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客5 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI5 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-5 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh5 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能