Video Summarise 入门

Video Summarise 入门

  • Definition
  • [Achieve method](#Achieve method)
  • [What can chatgpt do for Video Summarise?](#What can chatgpt do for Video Summarise?)
  • Literatures

Definition

"Video summarization" refers to the process of creating a concise and condensed representation of a video, capturing its essential content, key events, or highlights. The goal is to provide a shorter version of the video that retains its most important information, making it more accessible for viewers and easier to comprehend.

Achieve method

Video summarization can be achieved using various techniques, including:

  1. Keyframe Extraction: Selecting representative frames from the video to create a summary.

  2. Shot Boundary Detection: Identifying transitions between shots to divide the video into segments.

  3. Object or Activity Recognition: Using computer vision algorithms to recognize and highlight important objects or activities in the video.

  4. Temporal Sub-sampling: Selecting specific segments of the video to include in the summary while maintaining the temporal flow.

  5. Clustering and Classification: Grouping similar frames or shots together and selecting representative clusters.

The aim is to create a condensed version that captures the essence of the video, making it more manageable for users to review or comprehend the content without watching the entire video.

What can chatgpt do for Video Summarise?

  1. Textual Summaries: You can provide a description or transcript of the video to ChatGPT, and it can generate a concise summary based on the input.

  2. Clarification: If there are specific points in the video that need clarification or more context, you can ask ChatGPT for additional information.

  3. Question-Answering: If you have questions about specific details in the video, you can ask ChatGPT for answers, helping you understand and summarize the content.

  4. Scripting Assistance: If you're creating a script for a video summary, ChatGPT can help generate or refine the script based on your input.

Literatures

Title Year Publication
Video Summarise Using Deep Neural Networks: A surey 2021 IEEE
相关推荐
north_eagle17 分钟前
缓解电动汽车里程焦虑:一个简单的AI模型如何预测港口可用性
人工智能
张彦峰ZYF20 分钟前
用Coze打造智能文档整理助手:从创建到发布指南
人工智能·ai·agent·coze
MobotStone23 分钟前
从问答到决策:Agentic AI如何重新定义AI智能体的未来
人工智能·算法
星空的资源小屋24 分钟前
永久删除文件利器:Permadelete
java·javascript·人工智能
生成论实验室1 小时前
宇宙生成信息编码全书
人工智能·科技·神经网络·信息与通信·几何学
only-code1 小时前
Fast-DetectGPT:用“条件概率曲率”拆穿 AI 伪装的文本
人工智能·深度学习·机器学习·ai大模型·论文解读·ai检测·文本检测
兆。1 小时前
python全栈-人工智能基础-机器学习
人工智能·python·机器学习
魔镜前的帅比1 小时前
Few-shot / Chain-of-Thought 提示技巧
人工智能·chatgpt
深度学习lover1 小时前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
Coovally AI模型快速验证2 小时前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉