Video Summarise 入门

Video Summarise 入门

  • Definition
  • [Achieve method](#Achieve method)
  • [What can chatgpt do for Video Summarise?](#What can chatgpt do for Video Summarise?)
  • Literatures

Definition

"Video summarization" refers to the process of creating a concise and condensed representation of a video, capturing its essential content, key events, or highlights. The goal is to provide a shorter version of the video that retains its most important information, making it more accessible for viewers and easier to comprehend.

Achieve method

Video summarization can be achieved using various techniques, including:

  1. Keyframe Extraction: Selecting representative frames from the video to create a summary.

  2. Shot Boundary Detection: Identifying transitions between shots to divide the video into segments.

  3. Object or Activity Recognition: Using computer vision algorithms to recognize and highlight important objects or activities in the video.

  4. Temporal Sub-sampling: Selecting specific segments of the video to include in the summary while maintaining the temporal flow.

  5. Clustering and Classification: Grouping similar frames or shots together and selecting representative clusters.

The aim is to create a condensed version that captures the essence of the video, making it more manageable for users to review or comprehend the content without watching the entire video.

What can chatgpt do for Video Summarise?

  1. Textual Summaries: You can provide a description or transcript of the video to ChatGPT, and it can generate a concise summary based on the input.

  2. Clarification: If there are specific points in the video that need clarification or more context, you can ask ChatGPT for additional information.

  3. Question-Answering: If you have questions about specific details in the video, you can ask ChatGPT for answers, helping you understand and summarize the content.

  4. Scripting Assistance: If you're creating a script for a video summary, ChatGPT can help generate or refine the script based on your input.

Literatures

Title Year Publication
Video Summarise Using Deep Neural Networks: A surey 2021 IEEE
相关推荐
康康的AI博客1 小时前
腾讯王炸:CodeMoment - 全球首个产设研一体 AI IDE
ide·人工智能
中达瑞和-高光谱·多光谱1 小时前
中达瑞和LCTF:精准调控光谱,赋能显微成像新突破
人工智能
mahtengdbb11 小时前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
Pyeako1 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜2 小时前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
不大姐姐AI智能体2 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全3 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch3 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
2501_940198693 小时前
从“数据孤岛”到“智慧医脑”:实战 MCP 协议安全接入 HIS 系统,构建医疗级 AI 辅助诊断合规中台
人工智能·安全·asp.net