斯坦福机器学习 Lecture3

这里首先讲解了 局部加权回归/局部加权线性回归

讲得很好,我都听懂了


今天的主角是,为啥线性回归问题的cost function是误差平方和?而不是绝对误差和,或者四次方和?

卧槽,吴恩达讲得太好了

22:20 - 41:00


接下来我们看交叉熵(逻辑回归)推导

逻辑回归定义

交叉熵推导


今天的机器学习就学到这里,先做作业

TODO: here

相关推荐
idealmu2 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii2 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
ai产品老杨3 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd4 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室6 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风7 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo37 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823407 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT8 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
非门由也9 小时前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn