斯坦福机器学习 Lecture3

这里首先讲解了 局部加权回归/局部加权线性回归

讲得很好,我都听懂了


今天的主角是,为啥线性回归问题的cost function是误差平方和?而不是绝对误差和,或者四次方和?

卧槽,吴恩达讲得太好了

22:20 - 41:00


接下来我们看交叉熵(逻辑回归)推导

逻辑回归定义

交叉熵推导


今天的机器学习就学到这里,先做作业

TODO: here

相关推荐
Topstip1 分钟前
iOS 19 重大更新泄露,将带来更“聪明”的 Siri 挑战 ChatGPT
人工智能·ios·ai·chatgpt
Nerinic15 分钟前
深度学习基础1
人工智能·深度学习
数字扫地僧21 分钟前
深度学习与知识图谱嵌入的结合:从理论到实践
人工智能·深度学习·知识图谱
真理Eternal27 分钟前
手搓人工智能—聚类分析(下)谱系聚类与K-mean聚类
人工智能·机器学习
ZOMI酱33 分钟前
【AI系统】昇腾 AI 架构介绍
人工智能·架构
说私域1 小时前
精准零售驱动下的中国零售业变革与“开源 2+1 链动小程序”应用探究
人工智能·小程序·开源
AI视觉网奇1 小时前
WonderJourney 学习笔记
人工智能
钢铁男儿1 小时前
图像分割——区域增长
图像处理·人工智能·计算机视觉
敏编程1 小时前
用文字“画出”状态图:用 AI+Mermaid.js 解决对象状态变化的处理问题
人工智能·mermaid
CodeIsCoding1 小时前
鱼眼相机模型-MEI
人工智能·opencv·计算机视觉·相机