企业spark案例 —— 出租车轨迹分析(Python)

第1关:SparkSql 数据清洗

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark.sql import SparkSession
if __name__ =='__main__':
    spark = SparkSession.builder.appName("demo").master("local").getOrCreate()
    #**********begin**********#
    df = spark.read.option("header",True).option("delimiter","\t").csv("/root/data.csv")
    df.createTempView("data")
    spark.sql("""
    select regexp_replace(TRIP_ID,'\\\W+','') as TRIP_ID ,
        regexp_replace(CALL_TYPE,'\\\W+','') as CALL_TYPE ,
        regexp_replace(ORIGIN_CALL,'\\\W+','') as ORIGIN_CALL ,
        regexp_replace(TAXI_ID,'\\\W+','') as TAXI_ID ,
        regexp_replace(ORIGIN_STAND,'\\\W+','') as ORIGIN_STAND ,
        regexp_replace(TIMESTAMP,'\\\W+','') as TIMESTAMP ,
        regexp_replace(POLYLINE,'\\\W+','') as POLYLINE
    from data
    """).show()
    #**********end**********#
    spark.stop()

第2关:SparkSql数据分析

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark.sql import SparkSession
import json

if __name__ == '__main__' :
    spark = SparkSession.builder.master("local").appName("demo").getOrCreate()
    #**********begin**********#
    df = spark.read.option("header",True).option("delimiter","\t").csv("/root/data2.csv")
    df.createTempView("data")
    spark.sql("select TRIP_ID,CALL_TYPE,ORIGIN_CALL, TAXI_ID, ORIGIN_STAND, from_unixtime(TIMESTAMP,'yyyy-MM-dd') as TIME ,POLYLINE from data").show()
    spark.udf.register("timeLen", lambda x: {
        (len(json.loads(x)) - 1) * 15 if len(json.loads(x)) > 0 else 8
    })
    spark.udf.register("startLocation", lambda x: {
        str(json.loads(x)[0]) if len(json.loads(x)) > 0 else ""
    })
    spark.udf.register( "endLocation", lambda x: {
        str(json.loads(x)[len(json.loads(x)) - 1]) if len(json.loads(x)) > 0 else ""
    })
    df.createTempView("data2")
    res=spark.sql("select TRIP_ID,CALL_TYPE,ORIGIN_CALL,TAXI_ID,ORIGIN_STAND,from_unixtime(TIMESTAMP,'yyyy-MM-dd') as TIME, POLYLINE, timeLen(POLYLINE) as TIMELEN, startLocation(POLYLINE) as STARTLOCATION, endLocation(POLYLINE) as ENDLOCATION from data2")
    res.createTempView("data3")
    res.show()
    spark.sql("select CALL_TYPE,TIME,count(1) as NUM from data3 group by TIME,CALL_TYPE order by CALL_TYPE,TIME").show()
    #**********end**********#
相关推荐
2501_9411426415 分钟前
云计算与大数据:现代企业数字化转型的双引擎
spark
ins_lizhiming32 分钟前
在华为910B GPU服务器上运行DeepSeek-R1-0528模型
人工智能·pytorch·python·华为
bwz999@88.com1 小时前
win10安装miniforge+mamba替代miniconda
python
木子李BLOG1 小时前
Element Plus
前端·javascript·vue.js
Miketutu1 小时前
【大屏优化秘籍】Element UI El-Table 表格透明化与自定义行样式实战
前端·javascript·vue.js
止水编程 water_proof1 小时前
JavaScript基础
开发语言·javascript·ecmascript
std78792 小时前
用PYTHON实现俄罗斯方块游戏案例
python·游戏·pygame
少卿3 小时前
React Compiler 完全指南:自动化性能优化的未来
前端·javascript
爱隐身的官人3 小时前
beef-xss hook.js访问失败500错误
javascript·xss