企业spark案例 —— 出租车轨迹分析(Python)

第1关:SparkSql 数据清洗

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark.sql import SparkSession
if __name__ =='__main__':
    spark = SparkSession.builder.appName("demo").master("local").getOrCreate()
    #**********begin**********#
    df = spark.read.option("header",True).option("delimiter","\t").csv("/root/data.csv")
    df.createTempView("data")
    spark.sql("""
    select regexp_replace(TRIP_ID,'\\\W+','') as TRIP_ID ,
        regexp_replace(CALL_TYPE,'\\\W+','') as CALL_TYPE ,
        regexp_replace(ORIGIN_CALL,'\\\W+','') as ORIGIN_CALL ,
        regexp_replace(TAXI_ID,'\\\W+','') as TAXI_ID ,
        regexp_replace(ORIGIN_STAND,'\\\W+','') as ORIGIN_STAND ,
        regexp_replace(TIMESTAMP,'\\\W+','') as TIMESTAMP ,
        regexp_replace(POLYLINE,'\\\W+','') as POLYLINE
    from data
    """).show()
    #**********end**********#
    spark.stop()

第2关:SparkSql数据分析

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark.sql import SparkSession
import json

if __name__ == '__main__' :
    spark = SparkSession.builder.master("local").appName("demo").getOrCreate()
    #**********begin**********#
    df = spark.read.option("header",True).option("delimiter","\t").csv("/root/data2.csv")
    df.createTempView("data")
    spark.sql("select TRIP_ID,CALL_TYPE,ORIGIN_CALL, TAXI_ID, ORIGIN_STAND, from_unixtime(TIMESTAMP,'yyyy-MM-dd') as TIME ,POLYLINE from data").show()
    spark.udf.register("timeLen", lambda x: {
        (len(json.loads(x)) - 1) * 15 if len(json.loads(x)) > 0 else 8
    })
    spark.udf.register("startLocation", lambda x: {
        str(json.loads(x)[0]) if len(json.loads(x)) > 0 else ""
    })
    spark.udf.register( "endLocation", lambda x: {
        str(json.loads(x)[len(json.loads(x)) - 1]) if len(json.loads(x)) > 0 else ""
    })
    df.createTempView("data2")
    res=spark.sql("select TRIP_ID,CALL_TYPE,ORIGIN_CALL,TAXI_ID,ORIGIN_STAND,from_unixtime(TIMESTAMP,'yyyy-MM-dd') as TIME, POLYLINE, timeLen(POLYLINE) as TIMELEN, startLocation(POLYLINE) as STARTLOCATION, endLocation(POLYLINE) as ENDLOCATION from data2")
    res.createTempView("data3")
    res.show()
    spark.sql("select CALL_TYPE,TIME,count(1) as NUM from data3 group by TIME,CALL_TYPE order by CALL_TYPE,TIME").show()
    #**********end**********#
相关推荐
denghai邓海22 分钟前
红黑树删除之向上调整
python·b+树
封步宇AIGC1 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
何曾参静谧1 小时前
「Py」Python基础篇 之 Python都可以做哪些自动化?
开发语言·python·自动化
Prejudices1 小时前
C++如何调用Python脚本
开发语言·c++·python
我狠狠地刷刷刷刷刷1 小时前
中文分词模拟器
开发语言·python·算法
还是大剑师兰特1 小时前
D3的竞品有哪些,D3的优势,D3和echarts的对比
前端·javascript·echarts
Jam-Young1 小时前
Python的装饰器
开发语言·python
一只小白菜~1 小时前
web浏览器环境下使用window.open()打开PDF文件不是预览,而是下载文件?
前端·javascript·pdf·windowopen预览pdf
方才coding1 小时前
1小时构建Vue3知识体系之vue的生命周期函数
前端·javascript·vue.js
阿征学IT1 小时前
vue过滤器初步使用
前端·javascript·vue.js