企业spark案例 —— 出租车轨迹分析(Python)

第1关:SparkSql 数据清洗

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark.sql import SparkSession
if __name__ =='__main__':
    spark = SparkSession.builder.appName("demo").master("local").getOrCreate()
    #**********begin**********#
    df = spark.read.option("header",True).option("delimiter","\t").csv("/root/data.csv")
    df.createTempView("data")
    spark.sql("""
    select regexp_replace(TRIP_ID,'\\\W+','') as TRIP_ID ,
        regexp_replace(CALL_TYPE,'\\\W+','') as CALL_TYPE ,
        regexp_replace(ORIGIN_CALL,'\\\W+','') as ORIGIN_CALL ,
        regexp_replace(TAXI_ID,'\\\W+','') as TAXI_ID ,
        regexp_replace(ORIGIN_STAND,'\\\W+','') as ORIGIN_STAND ,
        regexp_replace(TIMESTAMP,'\\\W+','') as TIMESTAMP ,
        regexp_replace(POLYLINE,'\\\W+','') as POLYLINE
    from data
    """).show()
    #**********end**********#
    spark.stop()

第2关:SparkSql数据分析

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark.sql import SparkSession
import json

if __name__ == '__main__' :
    spark = SparkSession.builder.master("local").appName("demo").getOrCreate()
    #**********begin**********#
    df = spark.read.option("header",True).option("delimiter","\t").csv("/root/data2.csv")
    df.createTempView("data")
    spark.sql("select TRIP_ID,CALL_TYPE,ORIGIN_CALL, TAXI_ID, ORIGIN_STAND, from_unixtime(TIMESTAMP,'yyyy-MM-dd') as TIME ,POLYLINE from data").show()
    spark.udf.register("timeLen", lambda x: {
        (len(json.loads(x)) - 1) * 15 if len(json.loads(x)) > 0 else 8
    })
    spark.udf.register("startLocation", lambda x: {
        str(json.loads(x)[0]) if len(json.loads(x)) > 0 else ""
    })
    spark.udf.register( "endLocation", lambda x: {
        str(json.loads(x)[len(json.loads(x)) - 1]) if len(json.loads(x)) > 0 else ""
    })
    df.createTempView("data2")
    res=spark.sql("select TRIP_ID,CALL_TYPE,ORIGIN_CALL,TAXI_ID,ORIGIN_STAND,from_unixtime(TIMESTAMP,'yyyy-MM-dd') as TIME, POLYLINE, timeLen(POLYLINE) as TIMELEN, startLocation(POLYLINE) as STARTLOCATION, endLocation(POLYLINE) as ENDLOCATION from data2")
    res.createTempView("data3")
    res.show()
    spark.sql("select CALL_TYPE,TIME,count(1) as NUM from data3 group by TIME,CALL_TYPE order by CALL_TYPE,TIME").show()
    #**********end**********#
相关推荐
Damon小智3 分钟前
从零开始XR开发:Three.js实现交互式3D积木搭建器
javascript·3d·xr
先做个垃圾出来………6 分钟前
SortedList
python
这里有鱼汤8 分钟前
从DeepSeek到Kronos,3个原因告诉你:Kronos如何颠覆传统量化预测
后端·python·aigc
晓宜16 分钟前
Java25 新特性介绍
java·python·算法
掘金安东尼18 分钟前
前端周刊434期(2025年9月29日–10月5日)
前端·javascript·面试
掘金安东尼28 分钟前
前端周刊433期(2025年9月22日–9月28日)
前端·javascript·github
井柏然31 分钟前
为什么打 npm 包时要将 Vue/React 进行 external 处理?
javascript·vite·前端工程化
深栈43 分钟前
机器学习:决策树
人工智能·python·决策树·机器学习·sklearn
江城开朗的豌豆1 小时前
uni-app弹层遮罩难题?看我如何见招拆招!
前端·javascript·微信小程序
MediaTea1 小时前
Python:匿名函数 lambda
开发语言·python