【论文复现】QuestEval:《QuestEval: Summarization Asks for Fact-based Evaluation》

以下是复现论文《QuestEval: Summarization Asks for Fact-based Evaluation》(NAACL 2021)代码https://github.com/ThomasScialom/QuestEval/的流程记录:

  1. 在服务器上conda创建虚拟环境questeval(python版本于readme保持一致,為3.9)

    bash 复制代码
    conda create -n questeval python=3.9
  2. git clone下载项目代码于本地,用pycharm打开并远程连接到服务器的该环境中。

  3. 服务器上进入该项目目录,安裝本项目需要的库。

    bash 复制代码
    pip install -e .
  4. 这个项目作者开源的其实是功能 ,真正的主程序要自己创建,不过作者封装得很漂亮,只需要在项目根目录下新建一个python文件,如run.py,然后拷贝以下内容:(大体作者都在README.md中给出了,这里我是想用QuestEval模型去做摘要事实一致性检测

    python 复制代码
    from questeval.questeval_metric import QuestEval
    questeval = QuestEval(no_cuda=False, task="summarization", do_weighter=True)
    
    source_1 = "Since 2000, the recipient of the Kate Greenaway medal has also been presented with the Colin Mears award to the value of 35000."
    prediction_1 = "Since 2000, the winner of the Kate Greenaway medal has also been given to the Colin Mears award of the Kate Greenaway medal."
    references_1 = [
        "Since 2000, the recipient of the Kate Greenaway Medal will also receive the Colin Mears Awad which worth 5000 pounds",
        "Since 2000, the recipient of the Kate Greenaway Medal has also been given the Colin Mears Award."
    ]
    
    source_2 = "He is also a member of another Jungiery boyband 183 Club."
    prediction_2 = "He also has another Jungiery Boyband 183 club."
    references_2 = [
        "He's also a member of another Jungiery boyband, 183 Club.",
        "He belonged to the Jungiery boyband 183 Club."
    ]
    
    
    if __name__ == "__main__":
        score = questeval.corpus_questeval(
            hypothesis=[prediction_1, prediction_2],
            sources=[source_1, source_2],
            list_references=[references_1, references_2]
        )
    
        print(score)
  5. 如果服务器能够顺利连接huggingface,那么直接执行就跑通了,作者的代码没有任何bug。然而对于服务器访问不了huggingface的朋友们(比如我qwq),那么就需要把++所有涉及远程加载模型的代码修改成本地加载的逻辑++。

    1. 先在huggingface把需要的模型给传进服务器里。我个人把下载好的模型文件会放在/dev_data_2/zkyao/pretrain_model/下。这里需要下载的模型有:t5-qa_squad2neg-en,t5-qg_squad1-en,t5-weighter_cnndm-en,bert-base-multilingual-cased

    2. 首先修改questeval/questeval_metric.py。作者把加载QuestEval框架 所涉及到的模型的逻辑全部写在了_load_all_models()方法中。修改这几个部分:

      python 复制代码
      # models['hyp']['QA'] = f'{HF_ORGANIZATION}/t5-qa_squad2neg-en'
      models['hyp']['QA'] = "/dev_data_2/zkyao/pretrain_model/t5-qa_squad2neg-en"
      # models['hyp']['QG'] = f'{HF_ORGANIZATION}/t5-qg_squad1-en'
      models['hyp']['QG'] = "/dev_data_2/zkyao/pretrain_model/t5-qg_squad1-en"
      python 复制代码
      # models['Weighter'] = self.get_model(model_name=f'{HF_ORGANIZATION}/t5-weighter_cnndm-en')
      models['Weighter'] = self.get_model(model_name="/dev_data_2/zkyao/pretrain_model/t5-weighter_cnndm-en")
    3. 接下來就是特别隐蔽的库源码了,因为huggingface提供的metrics组件内部实现逻辑,是要加载模型的。然而正不巧的是,这里用到的metric------bert_score,源码的开发者显然不会考虑到服务器访问不了huggingface的我们。

      bert_score库的scorer.py代码的这部分,将模型类型和模型路径同时用self.model_type属性指代,导致把逻辑写死了必须远程加载模型。

      为了能本地加载模型,不得不这样了。打开/{path_to_your_env}/lib/python3.9/site-packages/bert_score/scorer.py,作出如下修改:

  6. 接下来整个测试程序就能顺利执行了!

相关推荐
uncle_ll2 天前
达摩院Paraformer-ONNX模型:一站式高精度中文语音识别工业级解决方案
人工智能·nlp·语音识别·asr
数据智能老司机2 天前
使用Python和PyTorch的生成式AI——文本生成方法的崛起
深度学习·llm·nlp
MARS_AI_3 天前
AI 智能外呼系统的智能体现
人工智能·自然语言处理·nlp·语音识别·信息与通信
黎明鱼儿4 天前
基于 docker 的 Xinference 全流程部署指南
docker·容器·大模型·nlp·xinference
Thomas_Cai4 天前
Bert论文解析
人工智能·深度学习·nlp·bert·transformer
鲲志说7 天前
本地化部署DeepSeek-R1蒸馏大模型:基于飞桨PaddleNLP 3.0的实战指南
人工智能·nlp·aigc·paddlepaddle·飞桨·paddle·deepseek
weixin_435208168 天前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
反方向的钟儿13 天前
人工智能入门(2)
大数据·人工智能·学习·自然语言处理·nlp·vr
冲上云霄的Jayden14 天前
PaddleNLP UIE 通过OCR识别银行回执信息
nlp·ocr·paddle·paddlenlp·信息提取·uie·银行回执