浅谈多回路电表在荷兰光伏系统配电项目中的应用

1.背景信息 Background:

随着全球化石能源(石油,煤炭)越来越接近枯竭,污染日趋严重,气候日益变暖等问题,全球多个国家和地区相继出台了法规政策,推动了光伏产业的发展。但是现有的光伏监测系统由于线路数量多且集中,导致了大量占用配电房空间的问题。

安科瑞数据中心产品集成度高,单个模块可以监测48个回路,同时还可以搭配开关量采集模块,实现对光伏系统线路的监控。

As the global fossil energy (oil and coal) is approaching exhaustion, pollution is becoming more and more serious, and the climate is warming, etc., many countries and regions around the world have successively issued regulations and policies, which have promoted the development of the PV industry.

However, due to the large number and concentration of the PV monitoring circuits, a large number of power distribution room space is occupied.

Acrel multi-channel energy meter has a high level of integration. A single module can monitor 48 circuits, and at the same time, it can also be matched with switch acquisition module to realize the circuit monitoring of PV system.

2.项目信息 Project Brief:

荷兰某光伏系统公司,为各类建筑提供光伏系统。在客户的光伏监测系统中,需要同时监测300多个回路的电流情况,这300多个回路集中分布在客户的配电房中,为了更合理的采集信息,客户选择了AMC16Z-FAK48的产品,从而实现了在不增加柜子的情况下完成了对线路的监测。

One PV system company in the Netherlands that provides PV systems for a wide variety of buildings.

In the PV monitoring system of the customer, the current situation of more than 300 loops need to be monitored at the same time. These loops are centrally in the distribution room. In order to collect information more effectively, the customer chooses the product of AMC16Z-FAK48, so as to complete the monitoring of the circuit without adding cabinets.

3.产品介绍 Product introduction

AMC16Z系列多回路采集模块 AMC16Z series multi-loop acquisition module

交流 AC Networking

直流DC Networking

4.组网方案 Networking Solution

交流组网方案 AC Networking Solution

直流组网方案 DC Networking Solution

5.安装实例Installation sample

Bibliography

1、Solutions for enterprise micro-grid system

安科瑞 缪阳扬

相关推荐
果冻人工智能39 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工40 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz42 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike1 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇1 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow