EMD、EEMD、FEEMD、CEEMDAN分解的对比(其中CEEMDAN分解可以有效消除模态分解)

理论部分

EMD (Empirical Mode Decomposition)、EEMD (Ensemble EMD)、FEEMD (Fast Ensemble EMD) 和 CEEMDAN (Complete Ensemble EMD with Adaptive Noise) 是一些常用的信号分解方法,它们在信号分解的效果和特性上有所区别。

  1. EMD:
  • EMD是最基础的信号分解方法,它通过将信号分解为一系列本征模态函数 (IMF) 来表示信号的本地频率。

  • EMD对信号的振幅和频率变化适应性很强,但对噪声和模态混叠问题的处理能力较弱,容易受到信号噪声的影响。

  1. EEMD:
  • EEMD在EMD的基础上引入随机扰动,通过多次对原始信号添加不同的噪声进行分解,从而改善了EMD的噪声抑制能力和分解稳定性。

  • EEMD能够有效降低噪声对分解结果的干扰,但仍可能存在模态混叠的问题。

  1. FEEMD:
  • FEEMD是对EEMD的改进,主要通过优化算法加速了分解过程和参数选择。FEEMD能够更快地分解信号,并且对噪声抑制效果更好,从而实现更准确的模态分解。

  • FEEMD在处理大数据量时具有一定的优势,但仍然可能面临模态混叠的挑战。

  1. CEEMDAN:
  • CEEMDAN是进一步改进的方法,通过将自适应噪声算法应用于EEMD来消除模态分解中的模态混叠问题。

  • CEEMDAN通过自适应地调整噪声水平,可以更好地抑制噪声对信号分解的影响,并提高分解的准确性和稳定性。

  • CEEMDAN在去噪和模态分解的任务中表现出较好的性能,能够有效消除模态混叠问题。

总的来说,CEEMDAN在处理信号分解时相对于传统的EMD、EEMD和FEEMD具有更好的去噪和模态分解效果。它通过自适应调整噪声水平,能够有效地消除模态混叠问题,提供更准确和稳定的分解结果。然而,对于不同的信号和应用场景,选择合适的分解方法还需要根据具体情况进行评估和比较。

代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复信号分解的对比

本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

相关推荐
Elastic 中国社区官方博客4 分钟前
Elastic 在 AWS re:Invent:总结一年在 agentic AI 创新中的合作
大数据·人工智能·elasticsearch·搜索引擎·云计算·全文检索·aws
IvorySQL8 分钟前
版本发布| IvorySQL 5.1 发布
数据库·人工智能·postgresql·开源
AI营销资讯站10 分钟前
AI营销内容生产新范式,原圈科技多智能体平台赋能全球化出海新机遇
人工智能
free-elcmacom11 分钟前
机器学习高阶教程<6>推荐系统高阶修炼手册:混排、多任务与在线学习,解锁精准推荐新境界
人工智能·python·学习·算法·机器学习·机器人
pingao14137811 分钟前
气象监测新纪元:多功能自动站如何赋能智慧城市
人工智能·智慧城市
独自归家的兔13 分钟前
基于GUI-PLUS 搭配 Java Robot 实现智能桌面操控
java·开发语言·人工智能
我不是小upper15 分钟前
ARIMA-LSTM-Prophet 融合模型在股票预测中的应用
人工智能·rnn·lstm
黑客思维者16 分钟前
机器学习008:监督学习【回归算法】(逻辑回归)--AI世界的“是非判断题大师”
人工智能·学习·机器学习·逻辑回归
1张驰咨询117 分钟前
智慧城市交付困局:用六西格玛培训,将项目毛利从行业平均的12%提升至龙头水平的22%
人工智能·职场和发展·智慧城市·六西格玛
AI营销资讯站18 分钟前
AI营销内容生产领域原圈科技多智能体系统优势分析
大数据·人工智能