EMD、EEMD、FEEMD、CEEMDAN分解的对比(其中CEEMDAN分解可以有效消除模态分解)

理论部分

EMD (Empirical Mode Decomposition)、EEMD (Ensemble EMD)、FEEMD (Fast Ensemble EMD) 和 CEEMDAN (Complete Ensemble EMD with Adaptive Noise) 是一些常用的信号分解方法,它们在信号分解的效果和特性上有所区别。

  1. EMD:
  • EMD是最基础的信号分解方法,它通过将信号分解为一系列本征模态函数 (IMF) 来表示信号的本地频率。

  • EMD对信号的振幅和频率变化适应性很强,但对噪声和模态混叠问题的处理能力较弱,容易受到信号噪声的影响。

  1. EEMD:
  • EEMD在EMD的基础上引入随机扰动,通过多次对原始信号添加不同的噪声进行分解,从而改善了EMD的噪声抑制能力和分解稳定性。

  • EEMD能够有效降低噪声对分解结果的干扰,但仍可能存在模态混叠的问题。

  1. FEEMD:
  • FEEMD是对EEMD的改进,主要通过优化算法加速了分解过程和参数选择。FEEMD能够更快地分解信号,并且对噪声抑制效果更好,从而实现更准确的模态分解。

  • FEEMD在处理大数据量时具有一定的优势,但仍然可能面临模态混叠的挑战。

  1. CEEMDAN:
  • CEEMDAN是进一步改进的方法,通过将自适应噪声算法应用于EEMD来消除模态分解中的模态混叠问题。

  • CEEMDAN通过自适应地调整噪声水平,可以更好地抑制噪声对信号分解的影响,并提高分解的准确性和稳定性。

  • CEEMDAN在去噪和模态分解的任务中表现出较好的性能,能够有效消除模态混叠问题。

总的来说,CEEMDAN在处理信号分解时相对于传统的EMD、EEMD和FEEMD具有更好的去噪和模态分解效果。它通过自适应调整噪声水平,能够有效地消除模态混叠问题,提供更准确和稳定的分解结果。然而,对于不同的信号和应用场景,选择合适的分解方法还需要根据具体情况进行评估和比较。

代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复信号分解的对比

本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

相关推荐
搬砖的kk2 分钟前
openJiuwen 快速入门:使用华为云大模型搭建 AI 智能体
数据库·人工智能·华为云
Gavin在路上9 分钟前
SpringAIAlibaba之从执行生命周期到实战落地(7)
人工智能
万俟淋曦17 分钟前
【论文速递】2025年第50周(Dec-07-13)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器人·大模型·论文·robotics·具身智能
没有不重的名么26 分钟前
When Hypergraph Meets Heterophily: New Benchmark Datasets and Baseline
人工智能·深度学习·opencv·计算机视觉·超图
zxsz_com_cn43 分钟前
设备预测性维护优势全景解读:安全、降本、增效与可量化ROI
人工智能
爬点儿啥44 分钟前
[Ai Agent] 13 用 Streamlit 为 Agents SDK 打造可视化“驾驶舱”
人工智能·ai·状态模式·agent·streamlit·智能体
机器学习算法与Python实战1 小时前
腾讯翻译大模型,手机可运行
人工智能
百***58841 小时前
MATLAB高效算法实战技术文章大纲1
人工智能·算法·matlab
JosieBook1 小时前
【心理】心理咨询实战技术框架(zengfuyun)
网络·数据库·人工智能
百度智能云技术站1 小时前
百度百舸面向百度天池超节点的大模型推理引擎优化,持续降低昆仑芯 XPU 的 token 成本
人工智能