EMD、EEMD、FEEMD、CEEMDAN分解的对比(其中CEEMDAN分解可以有效消除模态分解)

理论部分

EMD (Empirical Mode Decomposition)、EEMD (Ensemble EMD)、FEEMD (Fast Ensemble EMD) 和 CEEMDAN (Complete Ensemble EMD with Adaptive Noise) 是一些常用的信号分解方法,它们在信号分解的效果和特性上有所区别。

  1. EMD:
  • EMD是最基础的信号分解方法,它通过将信号分解为一系列本征模态函数 (IMF) 来表示信号的本地频率。

  • EMD对信号的振幅和频率变化适应性很强,但对噪声和模态混叠问题的处理能力较弱,容易受到信号噪声的影响。

  1. EEMD:
  • EEMD在EMD的基础上引入随机扰动,通过多次对原始信号添加不同的噪声进行分解,从而改善了EMD的噪声抑制能力和分解稳定性。

  • EEMD能够有效降低噪声对分解结果的干扰,但仍可能存在模态混叠的问题。

  1. FEEMD:
  • FEEMD是对EEMD的改进,主要通过优化算法加速了分解过程和参数选择。FEEMD能够更快地分解信号,并且对噪声抑制效果更好,从而实现更准确的模态分解。

  • FEEMD在处理大数据量时具有一定的优势,但仍然可能面临模态混叠的挑战。

  1. CEEMDAN:
  • CEEMDAN是进一步改进的方法,通过将自适应噪声算法应用于EEMD来消除模态分解中的模态混叠问题。

  • CEEMDAN通过自适应地调整噪声水平,可以更好地抑制噪声对信号分解的影响,并提高分解的准确性和稳定性。

  • CEEMDAN在去噪和模态分解的任务中表现出较好的性能,能够有效消除模态混叠问题。

总的来说,CEEMDAN在处理信号分解时相对于传统的EMD、EEMD和FEEMD具有更好的去噪和模态分解效果。它通过自适应调整噪声水平,能够有效地消除模态混叠问题,提供更准确和稳定的分解结果。然而,对于不同的信号和应用场景,选择合适的分解方法还需要根据具体情况进行评估和比较。

代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复信号分解的对比

本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

相关推荐
超龄超能程序猿13 分钟前
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
人工智能·python·机器学习·numpy·pandas·scipy
卷福同学14 分钟前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
帅次22 分钟前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ1 小时前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用1 小时前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市
悟空胆好小1 小时前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件
探讨探讨AGV1 小时前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人
cwn_1 小时前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
聚客AI2 小时前
🔥 大模型开发进阶:基于LangChain的异步流式响应与性能优化
人工智能·langchain·agent
CareyWYR2 小时前
每周AI论文速递(250707-250711)
人工智能