EMD、EEMD、FEEMD、CEEMDAN分解的对比(其中CEEMDAN分解可以有效消除模态分解)

理论部分

EMD (Empirical Mode Decomposition)、EEMD (Ensemble EMD)、FEEMD (Fast Ensemble EMD) 和 CEEMDAN (Complete Ensemble EMD with Adaptive Noise) 是一些常用的信号分解方法,它们在信号分解的效果和特性上有所区别。

  1. EMD:
  • EMD是最基础的信号分解方法,它通过将信号分解为一系列本征模态函数 (IMF) 来表示信号的本地频率。

  • EMD对信号的振幅和频率变化适应性很强,但对噪声和模态混叠问题的处理能力较弱,容易受到信号噪声的影响。

  1. EEMD:
  • EEMD在EMD的基础上引入随机扰动,通过多次对原始信号添加不同的噪声进行分解,从而改善了EMD的噪声抑制能力和分解稳定性。

  • EEMD能够有效降低噪声对分解结果的干扰,但仍可能存在模态混叠的问题。

  1. FEEMD:
  • FEEMD是对EEMD的改进,主要通过优化算法加速了分解过程和参数选择。FEEMD能够更快地分解信号,并且对噪声抑制效果更好,从而实现更准确的模态分解。

  • FEEMD在处理大数据量时具有一定的优势,但仍然可能面临模态混叠的挑战。

  1. CEEMDAN:
  • CEEMDAN是进一步改进的方法,通过将自适应噪声算法应用于EEMD来消除模态分解中的模态混叠问题。

  • CEEMDAN通过自适应地调整噪声水平,可以更好地抑制噪声对信号分解的影响,并提高分解的准确性和稳定性。

  • CEEMDAN在去噪和模态分解的任务中表现出较好的性能,能够有效消除模态混叠问题。

总的来说,CEEMDAN在处理信号分解时相对于传统的EMD、EEMD和FEEMD具有更好的去噪和模态分解效果。它通过自适应调整噪声水平,能够有效地消除模态混叠问题,提供更准确和稳定的分解结果。然而,对于不同的信号和应用场景,选择合适的分解方法还需要根据具体情况进行评估和比较。

代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复信号分解的对比

本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

相关推荐
gorgeous(๑>؂<๑)2 小时前
【ICLR26-金玥明-新国立】MedAgent-Pro:通过推理智能体工作流实现基于证据的多模态医疗诊断
人工智能
hqyjzsb2 小时前
企业AI人才库的搭建体系与长效运营管理方案
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·改行学it
码农小韩2 小时前
AIAgent应用开发——大模型理论基础与应用(五)
人工智能·python·提示词工程·aiagent
拔刀能留住落樱吗、3 小时前
AI 落地避坑实战(2026 最新):200 + 项目复盘,数据 + 方案 + 代码思路,少亏 50 万
人工智能
龙山云仓3 小时前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
Dcs3 小时前
花 200 美刀买“黑盒”?Claude Code 这波更新,把程序员当傻子了吧…
人工智能·ai编程·claude
Mr_Lucifer3 小时前
成本大幅降低、Agent效率显著提升:CodeFlicker 接入 MiniMax M2.5 与 GLM-5
人工智能·ai编程·产品
Jonathan Star3 小时前
Ant Design (antd) Form 组件中必填项的星号(*)从标签左侧移到右侧
人工智能·python·tensorflow
挂科边缘4 小时前
YOLOv12环境配置,手把手教你使用YOLOv12训练自己的数据集和推理(附YOLOv12网络结构图),全文最详细教程
人工智能·深度学习·yolo·目标检测·计算机视觉·yolov12
deep_drink4 小时前
【论文精读(三)】PointMLP:大道至简,无需卷积与注意力的纯MLP点云网络 (ICLR 2022)
人工智能·pytorch·python·深度学习·3d·point cloud