EMD、EEMD、FEEMD、CEEMDAN分解的对比(其中CEEMDAN分解可以有效消除模态分解)

理论部分

EMD (Empirical Mode Decomposition)、EEMD (Ensemble EMD)、FEEMD (Fast Ensemble EMD) 和 CEEMDAN (Complete Ensemble EMD with Adaptive Noise) 是一些常用的信号分解方法,它们在信号分解的效果和特性上有所区别。

  1. EMD:
  • EMD是最基础的信号分解方法,它通过将信号分解为一系列本征模态函数 (IMF) 来表示信号的本地频率。

  • EMD对信号的振幅和频率变化适应性很强,但对噪声和模态混叠问题的处理能力较弱,容易受到信号噪声的影响。

  1. EEMD:
  • EEMD在EMD的基础上引入随机扰动,通过多次对原始信号添加不同的噪声进行分解,从而改善了EMD的噪声抑制能力和分解稳定性。

  • EEMD能够有效降低噪声对分解结果的干扰,但仍可能存在模态混叠的问题。

  1. FEEMD:
  • FEEMD是对EEMD的改进,主要通过优化算法加速了分解过程和参数选择。FEEMD能够更快地分解信号,并且对噪声抑制效果更好,从而实现更准确的模态分解。

  • FEEMD在处理大数据量时具有一定的优势,但仍然可能面临模态混叠的挑战。

  1. CEEMDAN:
  • CEEMDAN是进一步改进的方法,通过将自适应噪声算法应用于EEMD来消除模态分解中的模态混叠问题。

  • CEEMDAN通过自适应地调整噪声水平,可以更好地抑制噪声对信号分解的影响,并提高分解的准确性和稳定性。

  • CEEMDAN在去噪和模态分解的任务中表现出较好的性能,能够有效消除模态混叠问题。

总的来说,CEEMDAN在处理信号分解时相对于传统的EMD、EEMD和FEEMD具有更好的去噪和模态分解效果。它通过自适应调整噪声水平,能够有效地消除模态混叠问题,提供更准确和稳定的分解结果。然而,对于不同的信号和应用场景,选择合适的分解方法还需要根据具体情况进行评估和比较。

代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复信号分解的对比

本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

相关推荐
飞哥数智坊6 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI9 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元10 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元10 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心10 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术11 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing11 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_11 小时前
NCCL的用户缓冲区注册
人工智能
sans_11 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算12 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc