深度学习人体语义分割在弹幕防遮挡上的实现 - python 计算机竞赛

文章目录

  • [1 前言](#1 前言)
  • [1 课题背景](#1 课题背景)
  • [2 技术原理和方法](#2 技术原理和方法)
  • [3 实例分割](#3 实例分割)
  • [4 实现效果](#4 实现效果)
  • [5 最后](#5 最后)

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习人体语义分割在弹幕防遮挡上的应用

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

弹幕是显示在视频上的评论,可以以滚动、停留甚至更多动作特效方式出现在视频上,是观看视频的人发送的简短评论。

各大视频网站目前都有弹幕功能,之家也于2020年5月正式上线视频弹幕功能,受到了广大网友的喜爱,大家在观看视频的同时,也能通过弹幕进行互动。

但密集的弹幕,遮挡视频画面,严重影响用户观看体验,如何解决?

查阅了相关视频网站,发现B站推出了一种蒙版弹幕技术,可以让弹幕自动躲避人形区域,达到弹幕不挡人的效果。

B站视频弹幕不挡人的效果

2 技术原理和方法

2.1基本原理

通过AI计算机视觉的技术,对视频内容进行分析,并将之前已经定义好的"视频主体内容"进行识别,生成蒙版并分发给客户端后,让客户端利用 CSS3

的特性进行渲染从而达成最终的效果。这样就形成了我们最终看到的,"不挡脸"弹幕效果。

实现方法就正如 PS

中的"蒙版"一样,实心区域允许,空白区域拒绝,从而达到弹幕不挡人的效果。而技术的核心就在蒙版的生成上,所以将这个功能称之为"蒙版弹幕"。

2.2 技术选型和方法

1、提取视频帧画面。对音视频的处理,大家一般都会想到FFmpeg组件,我们也是使用FFmpeg组件提取每帧的视频画面,使用的是PyAV组件,PyAV是FFmpeg封装,能够灵活的编解码视频和音频,并且支持Python常用的数据格式(如numpy)。

2、识别视频帧画面人像区域。解决方案:使用AI计算机视觉的实例分割技术,可以识别视频帧画面的人像区域。

3、AI框架:目前市面上的AI框架,主要以TensorFlow,PyTorch最流行。

  • TensorFlow :出身豪门的工业界霸主,由Google Brain团队研发。具有如下优点:支持多种编程语言;灵活的架构支持多GPU、分布式训练,跨平台运行能力强;自带 TensorBoard 组件,能可视化计算图,便于让用户实时监控观察训练过程;官方文档非常详尽,可查询资料众多;社区庞大,大量开发者活跃于此。
  • PyTorch :以动态图崛起的学术界宠儿,是基于 Torch 并由Facebook强力支持的python端的开源深度学习库。具有如下优点:简洁: PyTorch 在设计上更直观,追求尽量少的封装,建模过程透明,代码易于理解;易用:应用十分灵活,接口沿用 Torch ,契合用户思维,尽可能地让用户实现"所思即所得",不过多顾虑框架本 PyTorch 。原因: TensorFlow 入门难度较大,学习门槛高,系统设计过于复杂;而 PyTorch 入门难度低,上手快,而且提供的功能也非常易用,预训练模型也非常多。

4、实例分割技术:实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic

Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object

Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。

3 实例分割

简介

实例分割已成为机器视觉研究中比较重要、复杂和具有挑战性的领域之一。为了预测对象类标签和特定于像素的对象实例掩码,它对各种图像中出现的对象实例的不同类进行本地化。实例分割的目的主要是帮助机器人,自动驾驶,监视等。

实例分割同时利用目标检测和语义分割的结果,通过目标检测提供的目标最高置信度类别的索引,将语义分割中目标对应的Mask抽取出来。实例分割顾名思义,就是把一个类别里具体的一个个对象(具体的一个个例子)分割出来。

Mask R-CNN算法

本项目使用Mask R-CNN算法来进行图像实例分割。

网络结构图:

Mask R-CNN,一个相对简单和灵活的实例分割模型。该模型通过目标检测进行了实例分割,同时生成了高质量的掩模。通常,Faster

R-CNN有一个用于识别物体边界框的分支。Mask R-CNN并行添加了一个对象蒙版预测分支作为改进。使用FPN主干的head架构如图所示。

关键代码

python 复制代码
    ##利用不同的颜色为每个instance标注出mask,根据box的坐标在instance的周围画上矩形
    ##根据class_ids来寻找到对于的class_names。三个步骤中的任何一个都可以去掉,比如把mask部分
    ##去掉,那就只剩下box和label。同时可以筛选出class_ids从而显示制定类别的instance显示,下面
    ##这段就是用来显示人的,其实也就把人的id选出来,然后记录它们在输入ids中的相对位置,从而得到
    ##相对应的box与mask的准确顺序
    def display_instances_person(image, boxes, masks, class_ids, class_names,
                          scores=None, title="",
                          figsize=(16, 16), ax=None):
        """
        the funtion perform a role for displaying the persons who locate in the image
        boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
        masks: [height, width, num_instances]
        class_ids: [num_instances]
        class_names: list of class names of the dataset
        scores: (optional) confidence scores for each box
        figsize: (optional) the size of the image.
        """
        #compute the number of person
        temp = []
        for i, person in enumerate(class_ids):
            if person == 1:
                temp.append(i)
            else:
                pass
        person_number = len(temp)
        
        person_site = {}
        
        for i in range(person_number):
            person_site[i] = temp[i]


        NN = boxes.shape[0]   
        # Number of person'instances
        #N = boxes.shape[0]
        N = person_number
        if not N:
            print("\n*** No person to display *** \n")
        else:
           # assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
            pass
     
        if not ax:
            _, ax = plt.subplots(1, figsize=figsize)
     
        # Generate random colors
        colors = random_colors(NN)
     
        # Show area outside image boundaries.
        height, width = image.shape[:2]
        ax.set_ylim(height + 10, -10)
        ax.set_xlim(-10, width + 10)
        ax.axis('off')
        ax.set_title(title)
     
        masked_image = image.astype(np.uint32).copy()
        for a in range(N):
            
            color = colors[a]
            i = person_site[a]

            # Bounding box
            if not np.any(boxes[i]):
                # Skip this instance. Has no bbox. Likely lost in image cropping.
                continue
            y1, x1, y2, x2 = boxes[i]
            p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
                                  alpha=0.7, linestyle="dashed",
                                  edgecolor=color, facecolor='none')
            ax.add_patch(p)
     
            # Label
            class_id = class_ids[i]
            score = scores[i] if scores is not None else None
            label = class_names[class_id]
            x = random.randint(x1, (x1 + x2) // 2)
            caption = "{} {:.3f}".format(label, score) if score else label
            ax.text(x1, y1 + 8, caption,
                    color='w', size=11, backgroundcolor="none")
            
             # Mask
            mask = masks[:, :, i]
            masked_image = apply_mask(masked_image, mask, color)
     
            # Mask Polygon
            # Pad to ensure proper polygons for masks that touch image edges.
            padded_mask = np.zeros(
                (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
            padded_mask[1:-1, 1:-1] = mask
            contours = find_contours(padded_mask, 0.5)
            for verts in contours:
                # Subtract the padding and flip (y, x) to (x, y)
                verts = np.fliplr(verts) - 1
                p = Polygon(verts, facecolor="none", edgecolor=color)
                ax.add_patch(p)
           
        ax.imshow(masked_image.astype(np.uint8))
        plt.show()

4 实现效果

原视频

生成帧蒙板

最终效果

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关推荐
懒大王爱吃狼38 分钟前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷2 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
阿伟*rui2 小时前
配置管理,雪崩问题分析,sentinel的使用
java·spring boot·sentinel
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
XiaoLeisj4 小时前
【JavaEE初阶 — 多线程】单例模式 & 指令重排序问题
java·开发语言·java-ee
paopaokaka_luck4 小时前
【360】基于springboot的志愿服务管理系统
java·spring boot·后端·spring·毕业设计
dayouziei4 小时前
java的类加载机制的学习
java·学习
API快乐传递者4 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
Yaml46 小时前
Spring Boot 与 Vue 共筑二手书籍交易卓越平台
java·spring boot·后端·mysql·spring·vue·二手书籍
小小小妮子~6 小时前
Spring Boot详解:从入门到精通
java·spring boot·后端