Pandas+Matplotlib 数据分析

利用可视化探索图表

一、数据可视化与探索图

数据可视化是指用图形或表格的方式来呈现数据。图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义。用户通过探索图(Exploratory Graph)可以了解数据的特性、寻找数据的趋势、降低数据的理解门槛。

二、常见的图表实例

本章主要采用 Pandas 的方式来画图,而不是使用 Matplotlib 模块。其实 Pandas 已经把 Matplotlib 的画图方法整合到 DataFrame 中,因此在实际应用中,用户不需要直接引用 Matplotlib 也可以完成画图的工作。

1.折线图

折线图(line chart)是最基本的图表,可以用来呈现不同栏位连续数据之间的关系。绘制折线图使用的是 plot.line() 的方法,可以设置颜色、形状等参数。在使用上,拆线图绘制方法完全继承了 Matplotlib 的用法,所以程序最后也必须调用 plt.show() 产生图,如图8.4 所示。

复制代码
df_iris[['sepal length (cm)']].plot.line()   
plt.show()  
ax = df[['sepal length (cm)']].plot.line(color='green',title="Demo",style='--')   
ax.set(xlabel="index", ylabel="length")  
plt.show()

2.散布图

散布图(Scatter Chart)用于检视不同栏位离散数据之间的关系。绘制散布图使用的是 df.plot.scatter(),如图8.5所示。

复制代码
df = df_iris  
df.plot.scatter(x='sepal length (cm)', y='sepal width (cm)')  
  
from matplotlib import cm   
cmap = cm.get_cmap('Spectral')  
df.plot.scatter(x='sepal length (cm)',  
          y='sepal width (cm)',   
          s=df[['petal length (cm)']]*20,   
          c=df['target'],  
          cmap=cmap,  
          title='different circle size by petal length (cm)')

3.直方图、长条图

复制代码
 直方图(Histogram Chart)通常用于同一栏位,呈现连续数据的分布状况,与直方图类似的另一种图是长条图(Bar Chart),用于检视同一栏位,如图 8.6 所示。

df[['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)','petal width (cm)']].plot.hist()  
2 df.target.value_counts().plot.bar()

4. 圆饼图、箱形图

圆饼图(Pie Chart)可以用于检视同一栏位各类别所占的比例,而箱形图(Box Chart)则用于检视同一栏位或比较不同栏位数据的分布差异,如图 8.7 所示。

复制代码
df.target.value_counts().plot.pie(legend=True)  
df.boxplot(column=['target'],figsize=(10,5))

数据探索实战分享

本节利用两个真实的数据集实际展示数据探索的几种手法。

一、2013年美国社区调查

在美国社区调查(American Community Survey)中,每年约有 350 万个家庭被问到关于他们是谁及他们如何生活的详细问题。调查的内容涵盖了许多主题,包括祖先、教育、工作、交通、互联网使用和居住。

数据来源:https://www.kaggle.com/census/2013-american-community-survey。

数据名称:2013 American Community Survey。

先观察数据的样子与特性,以及每个栏位代表的意义、种类和范围。

复制代码
# 读取数据  
df = pd.read_csv("./ss13husa.csv")  
# 栏位种类数量  
df.shape  
# (756065,231)  
  
# 栏位数值范围  
df.describe()

先将两个 ss13pusa.csv 串连起来,这份数据总共包含 30 万笔数据,3 个栏位:SCHL ( 学历,School Level)、 PINCP ( 收入,Income) 和 ESR ( 工作状态,Work Status)。

复制代码
pusa = pd.read_csv("ss13pusa.csv") pusb = pd.read_csv("ss13pusb.csv")  
# 串接两份数据  
col = ['SCHL','PINCP','ESR']  
df['ac_survey'] = pd.concat([pusa[col],pusb[col],axis=0)

依据学历对数据进行分群,观察不同学历的数量比例,接着计算他们的平均收入。

复制代码
group = df['ac_survey'].groupby(by=['SCHL']) print('学历分布:' + group.size())  
group = ac_survey.groupby(by=['SCHL']) print('平均收入:' +group.mean())

二、波士顿房屋数据集

波士顿房屋数据集(Boston House Price Dataset)包含有关波士顿地区的房屋信息, 包 506 个数据样本和 13 个特征维度。

数据来源:https://archive.ics.uci.edu/ml/machine-learning-databases/housing/。

数据名称:Boston House Price Dataset。

先观察数据的样子与特性,以及每个栏位代表的意义、种类和范围。

可以用直方图的方式画出房价(MEDV)的分布,如图 8.8 所示。

复制代码
df = pd.read_csv("./housing.data")  
# 栏位种类数量  
df.shape  
# (506, 14)  
  
#栏位数值范围df.describe()  
import matplotlib.pyplot as plt   
df[['MEDV']].plot.hist()   
plt.show()

注:图中英文对应笔者在代码中或数据中指定的名字,实践中读者可将它们替换成自己需要的文字。

接下来需要知道的是哪些维度与"房价"关系明显。先用散布图的方式来观察,如图8.9所示。

复制代码
# draw scatter chart   
df.plot.scatter(x='MEDV', y='RM') .  
plt.show()

最后,计算相关系数并用聚类热图(Heatmap)来进行视觉呈现,如图 8.10 所示。

复制代码
# compute pearson correlation   
corr = df.corr()  
# draw  heatmap   
import seaborn as sns   
corr = df.corr()   
sns.heatmap(corr)   
plt.show()

颜色为红色,表示正向关系;颜色为蓝色,表示负向关系;颜色为白色,表示没有关系。RM 与房价关联度偏向红色,为正向关系;LSTAT、PTRATIO 与房价关联度偏向深蓝, 为负向关系;CRIM、RAD、AGE 与房价关联度偏向白色,为没有关系

相关推荐
未来魔导8 小时前
go语言中json操作总结(下)
数据分析·go·json
studytosky10 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
Mia@12 小时前
数据分析(一)
数据挖掘·数据分析
小辉懂编程16 小时前
数据分析入门:使用pandas进行数据处理 (数据读取,数据清洗,数据处理,数据可视化)
数据挖掘·数据分析·pandas
祝威廉17 小时前
摘下数据分析的皇冠:机器学习,InfiniSynapse 金融评分卡案例
人工智能·机器学习·金融·数据挖掘·数据分析
祁思妙想17 小时前
数据分析三剑客:NumPy、Pandas、Matplotlib
数据分析·numpy·pandas
SelectDB17 小时前
较 Trino 省 67% 成本,速度快 10 倍,中通快递基于 SelectDB 的湖仓分析架构
数据库·数据分析
xingzhemengyou118 小时前
python pandas操作excel
python·excel·pandas
asyxchenchong88818 小时前
联合物种分布模型HMSC——深入贝叶斯群落生态学分析,涵盖单物种与多物种建模、环境筛与生物筛解析、时空数据分析及系统发育整合等
经验分享·数据挖掘·数据分析
不拱地的猪18 小时前
Matplotlib 的字体参数设置方法(MAC OSX)
python·mac·matplotlib·字体设置·文中显示中文