凸包的学习之路

凸包的学习之路-CSDN博客

5.算法策略5:Graham Scan Algorithm

算法思路:

给定二维点集,求其凸包

1)presorting:

(1)先找到 ltl点 ,也就是y值最小的点,若是存在y值相等的点,再取x值最小的点。将该点压入到栈S中。

(2)再从 ltl点 出发,找到第二个特别的点,压入到S栈中。这个特别的点(暂时记作A)的特别之处在于点集中其他所有的点都在A和ltl的左侧(也就是 ToLeftTest(ltl,A,S) 为true)。

---------这时S栈中有两个元素

(3)将点集中剩余的其他点按照与 ltl-A 所成的角度排序,角度越大的,越早被压入T栈。这个找所成角度最大的那个点,把它压入栈中也比较动了动我的脑子。

---------这时T栈中按顺序放有点集中的其他元素

2)graham scan的核心算法

每次取S栈的次栈顶、栈顶 以及 T栈的栈顶 做 ToLeftTest。如果是true,代表T栈的栈顶元素要加入到S栈中来,否则当前S栈的栈顶元素将要被弹出,直到T栈变空为止。每次S栈的状态,都是当前scan到的凸包状态,然后也会有回退(backtrack)过程进行调整。

核心算法:

while(!T.empty())

if(toLeftTest(S[S.top-1],S[S.top],T[T.top]){

S.push(T.pop());

}

else{

S.pop();

}

理解起来还是可以的。

这里,邓俊辉老师的课程上没有提供presorting相关实现思路的代码(只是口头描述了一下),对我这种菜鸡造成了一定的困难。脑袋累累也许才能有所突破和进步,总是要有这么一个过程。数据结构也学过去好久了,但好在网上有构建栈、压入栈等的代码可以学习(不难)。总之,几番探索,搞定了S栈和T栈。真正的graham scan部分在实现上就那么几行代码(算法复杂度低)。


这里将已经压入栈中的元素对应的 index[i] 值标记为-1,index[i]值存入的是角度的cos值(除了压入栈中的元素对应存入的是-1),cos值的范围在-1-1之间的。

这些都是写在类中的,在主函数中构建对象,然后用opencv将极边画出来看看。极点都在最终的S栈中。

结果如下:

(念叨念叨)不知道cv领域的未来,多学是没有坏处的,但方向不对也不行。每天像过流水账一样,我的青春小鸟一样不回来。

相关推荐
yong158585534321 分钟前
2. Linux C++ muduo 库学习——原子变量操作头文件
linux·c++·学习
IDIOT___IDIOT2 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans
Rousson2 小时前
硬件学习笔记--91 TMR型互感器介绍
笔记·学习
前端 贾公子3 小时前
Vue响应式原理学习:基本原理
javascript·vue.js·学习
Slaughter信仰3 小时前
图解大模型_生成式AI原理与实战学习笔记前四张问答(7题)
人工智能·笔记·学习
2401_834517074 小时前
AD学习笔记-26 Active Routing
笔记·学习
QiZhang | UESTC4 小时前
学习日记day45
学习
菜鸟‍4 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习
知识分享小能手5 小时前
CentOS Stream 9入门学习教程,从入门到精通,CentOS Stream 9 配置网络功能 —语法详解与实战案例(10)
网络·学习·centos
瑶光守护者5 小时前
【学习笔记】5G RedCap:智能回落5G NR驻留的接入策略
笔记·学习·5g