请求prometheus数据然后使用tensorflow计算正则模型

使用tensorflow 计算正则模型, 数据来源为Prometheus的数据近7天的数据, 然后计算了90%区间的上下限和当前值的概率密度

python 复制代码
import requests
import pandas as pd
import tensorflow as tf
from datetime import datetime, timedelta

# 定义 Prometheus 查询的参数
url = "http://{your_path}/api/v1/query_range"
## 查询的QL
query = 'sum(alter_count{group="namespace"})'
start_time = int((datetime.now() - timedelta(days=7)).timestamp())
end_time = int(datetime.now().timestamp())

# 构建查询参数
params = {
    "query": query,
    "start": start_time,
    "end": end_time,
    "step": "1h"
}

# 发起 GET 请求
response = requests.get(url, params=params)

# 解析响应数据
data = response.json()['data']['result']

# 处理数据
results = []
for item in data:
    for value in item['values']:
        results.append({
            'timestamp': pd.to_datetime(value[0], unit='s'),
            'value': float(value[1])
        })
# 将数据转化为 DataFrame
df = pd.DataFrame(results)
df.set_index('timestamp', inplace=True)

# 构建 TensorFlow 模型
mean_value = tf.cast(df['value'].mean(), tf.float32)
std_dev = tf.cast(df['value'].std(), tf.float32)

# 取最后值, 也就是当前值
input_data = df.iloc[-1]['value']
input_data = tf.cast(input_data, tf.float32)  # 将输入数据转换为 float32 类型
result = tf.exp(-tf.square(input_data - mean_value) / (2 * tf.square(std_dev))) / (std_dev * tf.sqrt(2 * 3.14159))
print("当前数据 {} 的正态分布概率密度值为: {}".format(input_data.numpy(), result.numpy()))
# 计算命中 80% 区间的上下界
lower_bound = mean_value + tf.math.erfinv(-0.45) * std_dev
upper_bound = mean_value + tf.math.erfinv(0.45) * std_dev

print("命中 90% 区间的上界为: {}".format(upper_bound.numpy()))
print("命中 90% 区间的下界为: {}".format(lower_bound.numpy()))
相关推荐
花姐夫Jun12 分钟前
基于Vue+Python+Orange Pi Zero3的完整视频监控方案
vue.js·python·音视频
像风一样自由20201 小时前
Rust与Python完全指南:从零开始理解两门语言的区别与关系
开发语言·python·rust
房开民2 小时前
RKNN-Toolkit2入门
python
岁岁岁平安3 小时前
本机 MongoDB 注册系统服务、启用security认证
数据库·python·mongodb
程序员大雄学编程3 小时前
用Python来学微积分30-微分方程初步
开发语言·python·线性代数·数学·微积分
我爱学习_zwj3 小时前
App通信:HTTP与JSON全解析
python
机器学习ing.3 小时前
U-Net保姆级教程:从原理到医学细胞分割实战(PyTorch版)!
人工智能·pytorch·python·深度学习·机器学习
yzx9910134 小时前
基于Django的智慧园区管理系统开发全解析
后端·python·django
sunsunyu034 小时前
视频转图片工具
python·音视频