通用下载组件,你会吗

前言

下载,是一种常见的业务场景,而【下载】这个动作,其实可以从业务中抽离出来,使其作为一个通用的下载组件,有需求的业务方直接接入即可,避免重复开发。

通用数据下载中心(导出),旨在提供通用的,接入便捷,高效,稳定的数据下载服务

原始

每个服务自己写下载操作:

弊端:

  1. 如果数据量大,将假死在下载页面,交互上不友好
  2. 不方便管理
  3. 代码冗余

针对这些弊端,我们将一一解决!

解决方案

1、异步下载:

针对第一点,数据量大的情况下,我们可以采用异步的方式

  • 用户点击下载时,同步返回下载任务taskId
  • 前端轮询通过taskId获取下载数据

2、下载文件统一存储

针对弊端2(不方便管理),我们一般将下载的文件统一存储,比如 云服务商提供的OSS,对外暴露文件链接即可。

业务上可以自己统一管理这些下载的文件,同时也可以多次下载。

这里你一般需要额外提供一个下载管理页面,管理下载的状态、链接等等,类似于:

3、抽象通用组件

到目前为止,你可能发现了,每一个服务都在自己处理下载操作,并且下载动作的雷同,代码看起来很冗余,接下来我们尝试将下载进行抽象成独立于业务之外的组件。

方案1:写一个通用组件SDK,有需要的应用直接依赖SDK,这样一来,应用方就不需要关注下载这块逻辑,只需要写提供数据的部分即可。

可以看到,SDK统一封装下载逻辑,下载中心生成、管理下载任务,当然,文件上传可以直接从SDK到云OSS,也可以先从SDK将数据推送到下载中心,再由下载中心生成文件上传到云OSS。

方案2:让下载中心承担更多,主要做下载任务提交、下载管理、上传OSS等能力,应用层则提供数据接口,方便下载中心通过接口获取数据。

当然,以上两种方式都已经在生产实践过,各有各的好处,你可以按需选择。

更优解

当你需要导入的数据量级比较大时,你的系统压力可能会过载,频繁GC,最终可能会导致OOM。

怎么优化?

拉取一批数据追加写入到本地文件然后释放内存,保证对象在新生代可回收,预计大数据量导出时内存增长为锯齿波型图。

这里我们通过方案2进行优化:

相关推荐
weixin_456904273 小时前
Spring Boot 用户管理系统
java·spring boot·后端
眠りたいです4 小时前
基于脚手架微服务的视频点播系统-播放控制部分
c++·qt·ui·微服务·云原生·架构·播放器
cyforkk4 小时前
Spring 异常处理器:从混乱到有序,优雅处理所有异常
java·后端·spring·mvc
程序员爱钓鱼5 小时前
Go语言实战案例-开发一个Markdown转HTML工具
前端·后端·go
桦说编程5 小时前
爆赞!完全认同!《软件设计的哲学》这本书深得我心
后端
Aczone285 小时前
硬件(五) 存储、ARM 架构与指令系统
arm开发·嵌入式硬件·架构
闲看云起5 小时前
从 GPT 到 LLaMA:解密 LLM 的核心架构——Decoder-Only 模型
gpt·架构·llama
thinktik5 小时前
还在手把手教AI写代码么? 让你的AWS Kiro AI IDE直接读飞书需求文档给你打工吧!
后端·serverless·aws
大咖分享课7 小时前
架构性能优化三板斧:从10秒响应到毫秒级的演进之路
性能优化·架构