Anthropic LLM论文阅读笔记

  • 研究时间:与Instrcut GPT同期的工作,虽然其比ChatGPT发布更晚,但是其实完成的时间比ChatGPT更早。
  • 与ChatGPT的应用区别:该模型比ChatGPT回答我不知道的概率更高。
  • 将强化学习用于大语言模型(RLHF):发现这种方法可以提升几乎在所有NLP任务上的性能。随着参数的增加,效果也越来越好。如果模型经过了强化学习的辅助,效果会进一步提升;如果经过了有用性的训练,模型会有更大的提升;但是如果经过了有害性的训练,模型的有用性会下降,非有害性会提升。
  • 模型不断更新:每个星期用一个新的奖励函数和强化学习目标进行训练,相当于一个在线学习。
  • 模型实现了有用性和无害性:让模型分别在两组表示有用性和无害性的数据集上进行学习。这两个特性其实是相矛盾的,尽管将两个数据集放在一起训练问题也不大,但是仍然需要后续的改进来进行优化。
  • 数据标注:数据标注阶段,每次让模型生成两个回答,让标注工人选择他们觉得更好的回答。
  • RLHF对不同规格的模型的效果:如果模型本身的规模较小,经过RLHF后Zero-shot条件下的模型准确度会下降;但是这个问题在模型规模变大后解决掉。
  • 数据类型:采用的是多轮对话数据,而非常规的QA(单轮)数据,因此和ChatGPT的方式是类似的。
  • 比较不同模型的效果:通过Elo分数进行比较,通过Elo分数计算两个模型中的获胜率。获胜率越高,模型效果越好。
  • 模型精确度与数据量的关系:随着数据量的指数级提升,模型的精确度呈现一个线性的提升。
  • 模型精确度和对话轮数的关系:总体趋势是,对话轮数变多时,模型的精确度会下降。
相关推荐
CCPC不拿奖不改名17 小时前
循环神经网络RNN:整数索引→稠密向量(嵌入层 / Embedding)详解
人工智能·python·rnn·深度学习·神经网络·自然语言处理·embedding
石去皿17 小时前
大模型面试常见问答
人工智能·面试·职场和发展
FakeOccupational17 小时前
【电路笔记 PCB】Altium Designer : AD使用教程+Altium Designer常见AD操作命令与流程
开发语言·笔记
Java后端的Ai之路18 小时前
【AI大模型开发】-RAG 技术详解
人工智能·rag
墨香幽梦客18 小时前
家具ERP口碑榜单,物料配套专用工具推荐
大数据·人工智能
Hello_Embed18 小时前
RS485 双串口通信 + LCD 实时显示(DMA+IDLE 空闲中断版)
笔记·单片机·学习·操作系统·嵌入式·freertos
Coder_Boy_18 小时前
基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解
java·数据库·人工智能·spring boot
小乔的编程内容分享站18 小时前
C语言指针相关笔记
c语言·笔记
敏叔V58718 小时前
从人类反馈到直接偏好优化:AI对齐技术的实战演进
人工智能
琅琊榜首202018 小时前
AI赋能短剧创作:从Prompt设计到API落地的全技术指南
人工智能·prompt