redis五大常见数据结构的操作命令(string, hash, list, set和zset)

toc 复制代码

string

redis的string,直接按照二进制(不做任何的转换,存的是什么取出来的依旧是什么)的方式存储。所以string不仅仅可以存储文本数据,还可以存储整数,JSON,xml甚至音视频。但是string的大小最大为512M

二进制存储:减少了存取数据时的编码转换和乱码问题

set和get

如果key不存在,则创建新的键值对。如果key存在则让新的value覆盖旧的value,可能会改变原有的数据类型,此时原有key的ttl将失效

bash 复制代码
set key value [expiration EX seconds | PX milliseconds] [NX|XX]

比如

bash 复制代码
set k1 1
expire k1 10

等价于

bash 复制代码
set k1 1 ex 10

px设置的超时时间单位为毫秒

nx:如果key不存在,则设置value(相当于新建)。存在则不设置(返回nil)

xx:如果key不存在,则不设置value。存在则设置(相当于更新)

get没有扩展使用,只需要注意key对应的value必须是string,否则get将报错

mset和mget

bash 复制代码
mset key value[key value...]
mget key [key]

setnx,setex,pset

bash 复制代码
setnx key value
setex key seconds value
psetex key milliseconds value

incr和incrby

incr 针对value+1

incrby 针对value+/-n

decr 针对value-1

decrby 针对value+/-n

incrbyfloat 针对value+/- 小数

这些操作的时间复杂度为 O ( 1 ) O(1) O(1)

bash 复制代码
incr key

key必须是整数,若+1后整数值超过了64位,那么将报错

返回值是+1后的结果

若incr的key若不存在,那么默认set一个value位0的key,并进行incr操作

incrby key n,n可以是负数

append

bash 复制代码
append key value

若key已经存在,则将value拼接到原有value后面。若key不存在,那么append等同于set

时间复杂度 O ( 1 ) O(1) O(1),返回值是设置完成的value长度

当前使用的终端,使用utf-8编码格式,其中一个汉字占三个字节

由于redis的string不会对字符做任何处理,所以"你好"在string中占用6个字节

get k2则获取"你好"的二进制编码,其中\x表示十六进制,可以看到一共是12个十六进制数,也就是6个字节

在启动redis客户端时,加上--raw选项,就能使redis客户端自动对二进制数据进行翻译

getrange

bash 复制代码
getrange key start end

start和end为字符串的下标

返回指定区间(左闭右闭)的字符串,可以使用负数,如-1表示倒数第一个字符,-2表示倒数第二个字符

下标从0开始,若end越界,则end为最后一个字符的下标

如果字符串为汉字,那么可能返回乱码

setrange

bash 复制代码
setrange key offset value

offset:从第几个字节开始替换

value:替换的内容

返回值为新字符串的长度

k1从"helloworld"的第二个字节开始,被"wwwwwwwwwwwwwwwwwww"替换

若key之前不存在,或者value为空串,那么setrange会将偏移量之前的字节用0填充

strlen

bash 复制代码
strlen key

返回值为字符串的长度(以字节为单位)

string内部编码

  • int:8字节的长整型
  • embstr:大于等于39字节的字符串
  • raw:大于39字节的字符串
    redis会根据当前值的类型自动选择适合的内置类型进行存储

使用object encoding key查看key对应的内部编码

redis用字符串存储小数

对于小数的计算,需要将字符串转换成小数再将小数转换成字符串进行存储,所以遇到使用小数的场景时,需要考虑清楚

string的应用场景

作为缓存:应用服务访问数据时,先访问redis

若数据在redis中存在,则不需要访问底层数据库,直接访问redis

若数据在redis中不存在,则访问底层数据库,访问完成后底层数据库还需要将数据写入redis

为防止redis中的热点数据越来越多,底层数据库在将数据写入redis时,需要设置一个过期时间

同时redis在内存不足时,也有相应的淘汰策略

作为计数器:对于频繁访问数据库的操作,如统计视频的播放次数,使用redis再合适不过

需要注意的是:redis不擅长数据分析和处理,对于逻辑复杂的数据分析与处理,redis需要将数据异步写入到底层数据库(MySQL)中,将任务交给底层数据库

共享会话:redis存储session信息,应用服务器不再独立地存储属于自己的session,而是共享redis的session信息,这将优化客户端的体验,也是比较符合逻辑的

手机验证码:

如设置一分钟之内最多只能获取5次验证码

将用户的手机号作为key,set key 1 ex 60 nx,nx表示若key不存在才能成功set

接收set语句的返回值,若返回true,说明该用户之前未获取过验证码

若返回false,说明该用户之前获取过验证,此时将key对应的value+1(incr)。若key对应的value超过5,说明用户在一分钟之前已经获取了5次验证码,此时禁止获取验证码,否则执行生成验证码的逻辑

伪代码:

cpp 复制代码
string 发送验证码(string& phonenum)
{
	key = phonenum;
	bool t = redis::set key 1 ex 60 nx;
	if (!t)
	{
		long long cnt = redis::incr key;
		if (cnt > 5)
			return nullptr;
	}
	// 生成验证码并发送
}

生成验证码后,将用户的电话和验证码作为键值对存储到redis中,并设置过期时间

若用户请求登录,将用户的电话作为key,得到其value,判断是否存在且存在是否相等

hash

hset, hget, hexists和hdel

hset:设置hash中指定字段(field)的值(value)

bash 复制代码
hset key field value [field value ...]

返回设置成功的键值对(field和value)数量

hget:获取hash中指定字段的值

bash 复制代码
hget key field

hexists:判定hash是否有指定字段

bash 复制代码
hexists key field

返回值:1表示存在,0表示不存在

三者的时间复杂度为 O ( 1 ) O(1) O(1)

hdel:删除key中的field

注意和del进行区别,del删除的是key

bash 复制代码
hdel key field [field ...]

返回值:本次操作删除的字段个数

时间复杂度为 O ( n ) O(n) O(n),n为field的数量

hkeys和hvals

hkeys:获取key中所有的field

bash 复制代码
hkeys key


hvals:获取key中所有的field对应的value值

bash 复制代码
kvals key

两者的时间复杂度为 O ( n ) O(n) O(n),n为field的数量

两个操作存在一定的风险,和keys *的负作用差不多

hgetall和hmget

hgetall:获取指定key的键值对(field和value)

bash 复制代码
hgetall key


时间复杂度为 O ( n ) O(n) O(n),n为field的数量,谨慎使用!

hmget:一次查询key中的多个field

bash 复制代码
hmget key field[field ...]

给出的多个value顺序和指定的field顺序是匹配的

虽然有hmset,但是其作用和hset相同,hset就能一次性设置多个键值对,此时没有必要使用hmset

hlen, hsetnx, hincrby和hincrbyfloat

hlen:获取key中field的数量

bash 复制代码
hlen key

时间复杂度为 O ( 1 ) O(1) O(1)

当前key中不存在对应的field,则设置成功,否则设置失败

hsetnx:当前key中不存在对应的field,则设置成功,否则设置失败

bash 复制代码
hsetnx key field value

成功返回1,失败返回0

hincrby和hincrbyfloat:对当前key中某个field对应的value+/-整数/小数

bash 复制代码
hincrby key field n
hincrbyfloat key field n

上述命令的时间复杂度为 O ( 1 ) O(1) O(1)

hash的内部编码

  • ziplist(压缩列表):hash的本质是一个数组,有些位置有元素有些位置无元素,将无元素的位置进行压缩。ziplist节省了空间,但是读写速度较慢,所以需要满足:1. 哈希中的元素数量较少 2. 每个value值的长度较短。配置文件中修改hash-max-ziplist-entries(默认512个)和hash-max-ziplist-value(默认64字节)的值,改变hash的内部编码方式
  • hashtable(哈希表)

hash的使用场景

作为缓存:存储结构化的数据,类似关系数据库中的表结构。相比于使用string作为缓存,hash作为缓存时,可以根据field修改对应的value。而用string作为缓存时,修改某个value时,就需要将整个字符串反序列化,找到对应value所处的位置,修改完成后再将结构化数据进行序列化

使用hash作为缓存时,修改/读取数据很方便,也更高效,但是hash比较占用空间

使用string作为缓存时,修改/读取数据不方便,但是string比较节省空间

list

redis中的list类似于数组/顺序表,支持头尾的插入删除(实现方式类似deque)

下标从0开始,且支持负数下标,-1表示倒数第一个元素

list是"有序"的,即将list所有元素顺序颠倒,得到的list和原来的list不等价(顺序很关键)

并且list中的元素允许重复 ,对比hash,hash中的元素则不允许重复

而list支持头尾的插入删除,所以可以将list作为栈 / 队列使用,虽然list支持下标的索引(最早的时候,redis通过list类型实现了消息队列,现在redis通过stream类型实现消息队列)

lpush和lrange

lpush:头插,支持多次插入,多次插入时,按照顺序进行头插

bash 复制代码
lpush key element [element ...]

时间复杂度 O ( 1 ) O(1) O(1)

返回值:插入完成后list的长度

lrange:查看指定范围内的元素

bash 复制代码
lrange key start stop

start和stop为闭区间的起点与重点,并且下标支持负数

lpushx, rpush, rpushx

lpushx:如果key不存在,则直接返回,只有key存在时才将元素插入

bash 复制代码
lpushx key element [element ...]

rpush同lpush的使用相同:插入方向是list的尾端

redis中没有rrange,lrange中的l指的是list不是left

rpushx同lpushx的使用相同:插入方向是list的尾端

lpop, rpop

lpop:删除list左侧第一个元素

bash 复制代码
lpop key 

返回值为被删除元素

rpop:

bash 复制代码
rpop key [count]

在redis6.2之后,新增了count参数,表示要删除元素的数量

lindex, linsert

lindex:获取从左数第index个位置(从0开始)的元素

bash 复制代码
lindex key index

时间复杂度为 O ( n ) O(n) O(n),如果下标非法,返回nil

linsert:列表的任意位置插入元素

bash 复制代码
linsert key <before | after> pivot element 

将element插入左数第一个pivot的前/后

返回插入完成后list的长度,时间复杂度为 O ( n ) O(n) O(n)

llen:获取list的长度

bash 复制代码
llen key

lrem, ltrim, lset

rem = remove

bash 复制代码
lrem key count element

count:要删除的个数

element:要删除的值

  • count > 0 :从左往右删除count个
  • count < 0 :从右往左删除-count个
  • count = 0 :删除所有的element

ltrim:保留范围内的所有元素,删除其他元素

bash 复制代码
ltrim key start stop

lset:根据下标(从0开始),修改元素

bash 复制代码
lset key index element

blpop, brpop

阻塞版本命令

和lpop,rpop类似,只是多了个阻塞的特性,b = block

若list中存在元素,那么blpop,brpop与lpop,rpop相同

若list中不存在元素,那么blpop,brpop会根据timeout阻塞一段时间,期间redis可以执行其他命令。直到list中被插入元素,bolpop立即返回

blpop,brpop可以设置多个key,redis将从左往右遍历这些key,哪个key中存在元素,立即删除并返回

如果多个客户端对同一个键执行pop,最先执行pop命令的客户端将执行pop操作

bash 复制代码
blpop key [key ...] timeout 

timeout以秒为单位

blpop返回两个值,第二个值表示被删除元素,第一个值表示被删除元素来自哪个list

list内部编码

  • quicklist:较新的redis实现中,采用quicklist代替ziplist和linkedlist,其中ziplist是压缩链表,使用连续的内存块存储数据,当数据大小超过阈值时,将使用linkedlist。linkedlist则是普通双向链表,插入和删除元素的时间复杂度为 O ( 1 ) O(1) O(1),而ziplist的插入和删除元素的时间复杂度为 O ( n ) O(n) O(n)。quicklist集合了ziplist和linkedlist的优点

set

set是无序的(顺序不重要),变换顺序后,仍然认为两集合是相同的

set中的元素是唯一的

和list类似,set中的每个元素都是string类型

sadd, smembers, sismember

bash 复制代码
sadd key member [member ...]

返回成功添加的元素数量

查看集合中的元素

bash 复制代码
smembers key

两者的时间复杂度为 O ( 1 ) O(1) O(1)

判断集合中是否存在元素

bash 复制代码
sismember key member

存在返回1,不存在返回5

spop, srandmember

spop:随机删除count个元素

bash 复制代码
spop key [count]

返回被删除元素的值

srandmember:随机获取set中的一个元素

bash 复制代码
srandmember key 

smove, srem

smove:将元素从source中移动到destination

bash 复制代码
smove source destination member

返回1表示成功,0表示失败

时间复杂度 O ( 1 ) O(1) O(1)

若目标set中存在相同元素,那么smove会忽略插入操作,只执行源set中的删除操作

若源set中不存在元素,那么smove将失败

srem:从集合中删除元素

bash 复制代码
srem key member [member ...]

返回成功删除元素的个数

sinter, sinterstore

对集合求交集

bash 复制代码
sinter key [key ...]

每个key对应一个集合

返回交集,时间复杂度 O ( n ∗ m ) O(n * m ) O(n∗m),n为最小集合的元素数量,m为最大集合的元素数量

sinterstore:将交集存储到目标集合中

sinterstore destination key [key ...]

返回交集的元素个数

若目标集合中存在元素,那么这些元素将被删除/覆盖

sunion, sunionstore, sdiff, sdiffstore

sunion:返回并集的结果

sunion key [key ...]

时间复杂度 O ( n ) O(n) O(n),n为总的元素个数

sunionstore:将并集存储到目标集合中

sunionstore destination key [key ...]

返回并集的元素个数

sdiff:求集合的差集

sdiff key [key ...]

sdiffstore:将查集存储到集合中

sdiffstore destination key [key ...]

时间复杂度都是 O ( n ) O(n) O(n)

set的内部实现

  • inset:当元素为整数且数量不是很多时使用
  • hashtable

set应用场景

  1. 用set保存用户的"标签",用户画像。分析出个人的特征后,投其所好地投放消息。将搜集到的标签转换成简短的字符串,保存到set中。用set进行集合计算,可以衍生出"用户关系"
  2. 计算用户之间的共同好友,可以做到好友推荐
  3. 用set统计UV,user view,每个用户访问服务器都会产生一个UV,同一用户多次访问不会增加UV。PV,page view,用户每次访问服务器都会产生PV。UV需要按照用户进行去重

zset

有序集合,这里的有序指的是顺序/降序

zset中的member是唯一的,但是对应的分数可以重复,分数只是为了辅助排序

如果分数相同,按照元素的字典序排列

zset内部实现为升序

zadd, zrange

zadd:向有序集合中添加元素和分数

zadd key [NX | XX] [GT | LT] [CH] [INCR] score member [score member ...]

元素和分数作为一对pair,可以通过元素找到其分数,也能通过分数找到元素

XX:只更新元素,不会添加新的元素

NX:只添加元素,不会更新元素

默认:不存在就添加,存在就更新

LT:less than,只有当分数小于当前分数时,才会更新元素

GT:greater than,只有当分数大于当前分数时,才会更新元素,两者都不会添加新元素

CH:changed,zadd返回添加的元素数量,加上CH后,返回添加与更新的元素数量

INCR:对分数进行+/-运算,只能对一个分数进行运算。如zadd key INCR 4 member,对member的分数进行+4运算

时间复杂度为 O ( l o g N ) O(logN) O(logN),N为原集合的元素个数

zrange:返回指定范围内的元素

zrange key start stop [withscores]

zcard, zcount

获取集合中的元素个数

zcard key

获取指定区间的元素个数

zcount key min max

默认是闭区间,要表示开区间:(min (max

可以使用inf和-inf作为min和max

时间复杂度为 O ( l o g N ) O(logN) O(logN)

zrevrange, zrangebyscore

zrevrange按照降序返回指定范围内的元素

zrevrange key start stop [withscores]

按照分数查找元素,返回member,使用方法和zcount类似

该命令可能被废弃,将合并到zrange中

zrangebyscore key min max [withscores]

zpopmax, bzpopmax

zpopmax:删除并返回分数最高的count个元素(包括member和score)

zpopmax key [count]

如果存在多个元素的score相同,那么将删除member字典序最高的元素

时间复杂度为 O ( l o g N ∗ M ) O(logN * M) O(logN∗M),N为zset中元素数量,M为count

redis底层实现中,使用了一个通用的删除函数来完成zpopmax,该删除函数的时间复杂度为 O ( l o g N ) O(logN) O(logN),当然可以优化成 O ( 1 ) O(1) O(1),只需要特殊记录分数最高元素的位置即可。但是 l o g N logN logN其实也没有很慢,所以redis也就没有优化了

bzpopmax,阻塞版本的zpopmax

bzpopmax key [key ...] timeout

每个key都是一个zset,所以zset为空时,陷入阻塞。一旦有zset不为空,立即删除并返回

timeout的单位为秒,可以是小数的形式

时间复杂度 O ( l o g N ) O(logN) O(logN)

zpopmin, bzpopmin

zpopmin:删除并返回分数最低的count个元素

zpopmin key [count]

bzpopmin:,zpopmin的阻塞版本,和bzpopmax使用方法相同

zrank, zrevrank, zscore

zrand:返回member在zset中的排名

zrank key member

时间复杂度 O ( l o g N ) O(logN) O(logN)

zrevrank:返回member在zset中的排名(倒排)

zrevrank key member

zscore:查询指定member的分数

zscore key member 

时间复杂度 O ( 1 ) O(1) O(1),redis对于这个操作做了特殊优化(付出了额外的空间代价)

zrem, zremrangebyrank, zremrangebyscore

zrem:根据member删除元素

zrem key member [member ...]

时间复杂度 O ( l o g N ∗ M ) O(logN * M) O(logN∗M)

zremrangebyrank:根据排名的范围删除元素

zremrangebyrank key start stop

区间为闭区间

时间复杂度 O ( l o g N + M ) O(logN + M) O(logN+M)

zremrangebyscore:根据分数删除元素

zremrangebyscore key min max

区间为闭区间

时间复杂度 O ( l o g N + M ) O(logN + M) O(logN+M)

zincrby

zincrby:将指定member的score+/-值

zincrby key n member

zinterstore

求交集并保存到集合中

zinterstore destination numkeys key [key ...] [WEIGHTS weight [weight ...]] [ARRGEGATE <SUM | MIN | MAX>]

numkeys:后续有几个key参与运算

WEIGHTS:key在运算中的权重,相当于一个系数,每个集合的分数都要乘以这个系数,可以为小数,默认为1

AGGREGATE:进行运算时,根据member判断元素是否相同。如果member相同,score不同,最终分数如何计算?根据AGGREGATE的值计算,默认为相加

zunionstore

求zset的并集并存储到目标集合中

zunionstore destination numkeys key [key ...] [WEIGHTS weight [weight ...]] [ARRGEGATE <SUM | MIN | MAX>]

可选参数和zinterstore相同,这里不再赘述

zset编码方式

  • ziplist:若元素较少或者元素的体积较小,使用ziplist存储
  • skiplist:否则采用skiplist存储

zset应用场景

排行榜系统:微博热搜、游戏天梯排行、成绩排行

关键:排行中的"分数"是实时变化的,需要我们高效地更新排行

相关推荐
FIN技术铺3 小时前
Redis集群模式之Redis Sentinel vs. Redis Cluster
数据库·redis·sentinel
李元豪3 小时前
【智鹿空间】c++实现了一个简单的链表数据结构 MyList,其中包含基本的 Get 和 Modify 操作,
数据结构·c++·链表
我不是星海3 小时前
1.集合体系补充(1)
java·数据结构
程序员曦曦7 小时前
一文熟悉redis安装和字符串基本操作
自动化测试·软件测试·数据库·redis·功能测试·程序人生·缓存
Darkwanderor7 小时前
用数组实现小根堆
c语言·数据结构·二叉树·
风再云巅8 小时前
Redis下载历史版本
redis
鬣主任8 小时前
LinkedList和单双链表。
数据结构·链表
titan TV man8 小时前
上海市计算机学会竞赛平台2024年11月月赛丙组线段数
数据结构·算法
敲上瘾9 小时前
C++11新特性(二)
java·c语言·开发语言·数据结构·c++·python·aigc
Java 第一深情9 小时前
Redis经典面试题-深度剖析
数据库·redis·缓存