第五天 用Python批量处理Excel文件,实现自动化办公

用Python批量处理Excel文件,实现自动化办公

一、具体需求

有以下N个表,每个表的结构一样,如下:

需要把所有表数据汇总,把每个人的得分、积分分别加起来,然后按总积分排名,总积分一致时,名次一致且非连续排序;积分一致的前提下,按总得分降序展示,但不改变排名,结果如下:

二、Python开发

1、导入所需的包

复制代码
import pandas as pdimport glob

2、获取所有Excel文件的文件路径

复制代码
excel_files = glob.glob("./样例数据/*.xlsx")

3、将各表数据合并到主DataFrame

复制代码
# 初始化一个空DataFramemerged_df = pd.DataFrame()
# 循环读取每个Excel文件并合并到DataFramefor file in excel_files:    df = pd.read_excel(file, header=1)  # 读取Excel文件,跳过第一行数据    merged_df = merged_df._append(df, ignore_index=True)  # 合并到主DataFrame

4、计算总积分和总排名

复制代码
merged_df['总得分'] = merged_df.groupby('姓名')['月度得分'].transform('sum')  # 计算得分总和merged_df['总积分'] = merged_df.groupby('姓名')['积分'].transform('sum')  # 计算积分总和merged_df.drop_duplicates(subset=['姓名', '总积分'], keep='first', inplace=True)  # 去重

5、以总积分排名

复制代码
merged_df['总排名'] = merged_df['总积分'].rank(ascending=False, method='min')

6、按总积分列的值进行排序,重置索引

复制代码
merged_df = merged_df.sort_values(by=['总积分','总得分'], ascending=[False,False]).reset_index(drop=True)

7、获取需要输出的结果​​​​​​​

复制代码
result_df = pd.DataFrame()result_df = merged_df.loc[:, ['姓名','总得分','总积分','总排名']].copy()

8、将合并后的DataFrame输出到一个新Excel文件

复制代码
result_df.to_excel("总积分及排名.xlsx", index=False)

汇总代码展示如下

python 复制代码
import pandas as pd

import glob


excel_files = glob.glob("./样例数据/*.xlsx")


# 初始化一个空DataFrame
merged_df = pd.DataFrame()

# 循环读取每个Excel文件并合并到DataFrame  append() 方法在DataFrame的末尾添加一行或一列数据 新版本修改为 _append()
for file in excel_files:
    df = pd.read_excel(file, header=1)  # 读取Excel文件,跳过第一行数据
    merged_df = merged_df._append(df, ignore_index=True)  # 合并到主DataFrame


merged_df['总得分'] = merged_df.groupby('姓名')['月度得分'].transform('sum')  # 计算得分总和
merged_df['总积分'] = merged_df.groupby('姓名')['积分'].transform('sum')  # 计算积分总和
merged_df.drop_duplicates(subset=['姓名', '总积分'], keep='first', inplace=True)  # 去重

merged_df['总排名'] = merged_df['总积分'].rank(ascending=False, method='min')


merged_df = merged_df.sort_values(by=['总积分','总得分'], ascending=[False,False]).reset_index(drop=True)


result_df = pd.DataFrame()
result_df = merged_df.loc[:, ['姓名','总得分','总积分','总排名']].copy()

result_df.to_excel('./样例数据/总排名.xlsx', index=False)
相关推荐
好开心啊没烦恼1 小时前
Python 数据分析:计算,分组统计1,df.groupby()。听故事学知识点怎么这么容易?
开发语言·python·数据挖掘·数据分析·pandas
lljss20202 小时前
Python11中创建虚拟环境、安装 TensorFlow
开发语言·python·tensorflow
空中湖2 小时前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
CodeCraft Studio3 小时前
CAD文件处理控件Aspose.CAD教程:使用 Python 将绘图转换为 Photoshop
python·photoshop·cad·aspose·aspose.cad
Python×CATIA工业智造5 小时前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
onceco6 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
狐凄6 小时前
Python实例题:基于 Python 的简单聊天机器人
开发语言·python
悦悦子a啊7 小时前
Python之--基本知识
开发语言·前端·python
笑稀了的野生俊9 小时前
在服务器中下载 HuggingFace 模型:终极指南
linux·服务器·python·bash·gpu算力
Naiva9 小时前
【小技巧】Python+PyCharm IDE 配置解释器出错,环境配置不完整或不兼容。(小智AI、MCP、聚合数据、实时新闻查询、NBA赛事查询)
ide·python·pycharm