spark数据倾斜的解决思路

数据倾斜是:多个分区中,某个分区的数据比其他分区的数据多的多

数据倾斜导致的问题:

  1. 导致某个spark任务耗时较长,导致整个任务耗时增加,甚至出现OOM
  2. 运行速度慢:主要发生在shuffle阶段,同样的key的数据太多了,导致了某个key所在的task需要处理的数据量太大了,远超其他的task的处理时间
    一条经验:一般出现运行速度异常慢,或者OOM的主要原因是数据倾斜

数据倾斜的解决方案:

  1. 过滤不需要的key:有些key是脏数据,直接过滤,降低数据量
  2. 调整并行度:增大partition的数量,这个每个task要处理的数据量就降低了,各个key可以均匀的分配到多个partition中。但是如果某个key的数据量就是很多,还是会出现数据倾斜
  3. 将reduce侧的join转化为map侧join:如用reduceBykey来替换groupByKey,让map侧也发生aggr聚合,减少shuffle的数据量
  4. 随机前缀扩容:如果某个key就是很多,在此key之前加随机数,来打散key,然后聚合
  5. 如果在加载数据时就发生了数据倾斜,可以在加载后进行repartition
  6. 对于join数据倾斜,一般是小表join大表,用map join ,避免reduce join(shuffle join)
    总结:一般在shuffle时容易发生数据倾斜,因此主要思路是降低shuffle的量

spark的map join 和reduce join的区别?

都是将2个数据集进行join连接的操作,但是实现方式不同

  1. map join:小表join 大表, 将小表通过广播的方式,广播到所有excutors节点的内存中,然后在每个excutor节点上将大数据和小数据进行连接,这样可以快速连接,从而提高了join的效率;优点:由于将小数据加载到内存中,join的速度很快;缺点:由于数据会加载到内存中,会导致内存溢出的问题。
  2. reduce join : 大表join大表, 将2个数据集都进行分区,然后将相同的key的数据分发到同一个节点上进行连接操作。因为同一个key的数据被分发到同一个节点上,所以每个节点只需要处理一部分数据,从而减少了每个节点需要处理的数据量,提高了join的效率;优点:通过分布式的方式能够处理大数据集; 缺点:需要进行shuffle网络传输,如果传输速度较慢,可能会导致连接操作的效率较低。
相关推荐
zl9798992 小时前
RabbitMQ-Work Queues
分布式·rabbitmq
isNotNullX3 小时前
数据中台有什么用?数据仓库和数据中台怎么选?
大数据·数据仓库·人工智能·数据中台
roman_日积跬步-终至千里3 小时前
【AI Engineering】Should I build this AI application?—AI应用决策框架与实践指南
大数据·人工智能
DolphinScheduler社区4 小时前
图解 Apache DolphinScheduler 如何配置飞书告警
java·大数据·开源·飞书·告警·任务调度·海豚调度
回家路上绕了弯4 小时前
日增千万数据:数据库表设计与高效插入存储方案
分布式·后端
Code_Artist4 小时前
robfig/cron定时任务库快速入门
分布式·后端·go
稚辉君.MCA_P8_Java4 小时前
通义千问 SpringBoot 性能优化全景设计(面向 Java 开发者)
大数据·hadoop·spring boot·分布式·架构
SeaTunnel4 小时前
Apache SeaTunnel 如何将 CDC 数据流转换为 Append-Only 模式?
大数据·开源·apache·开发者·seatunnel·转换插件
万山y4 小时前
git remote add做了什么
大数据·git·elasticsearch
百度Geek说4 小时前
百度大数据成本治理实践
hadoop·spark