spark数据倾斜的解决思路

数据倾斜是:多个分区中,某个分区的数据比其他分区的数据多的多

数据倾斜导致的问题:

  1. 导致某个spark任务耗时较长,导致整个任务耗时增加,甚至出现OOM
  2. 运行速度慢:主要发生在shuffle阶段,同样的key的数据太多了,导致了某个key所在的task需要处理的数据量太大了,远超其他的task的处理时间
    一条经验:一般出现运行速度异常慢,或者OOM的主要原因是数据倾斜

数据倾斜的解决方案:

  1. 过滤不需要的key:有些key是脏数据,直接过滤,降低数据量
  2. 调整并行度:增大partition的数量,这个每个task要处理的数据量就降低了,各个key可以均匀的分配到多个partition中。但是如果某个key的数据量就是很多,还是会出现数据倾斜
  3. 将reduce侧的join转化为map侧join:如用reduceBykey来替换groupByKey,让map侧也发生aggr聚合,减少shuffle的数据量
  4. 随机前缀扩容:如果某个key就是很多,在此key之前加随机数,来打散key,然后聚合
  5. 如果在加载数据时就发生了数据倾斜,可以在加载后进行repartition
  6. 对于join数据倾斜,一般是小表join大表,用map join ,避免reduce join(shuffle join)
    总结:一般在shuffle时容易发生数据倾斜,因此主要思路是降低shuffle的量

spark的map join 和reduce join的区别?

都是将2个数据集进行join连接的操作,但是实现方式不同

  1. map join:小表join 大表, 将小表通过广播的方式,广播到所有excutors节点的内存中,然后在每个excutor节点上将大数据和小数据进行连接,这样可以快速连接,从而提高了join的效率;优点:由于将小数据加载到内存中,join的速度很快;缺点:由于数据会加载到内存中,会导致内存溢出的问题。
  2. reduce join : 大表join大表, 将2个数据集都进行分区,然后将相同的key的数据分发到同一个节点上进行连接操作。因为同一个key的数据被分发到同一个节点上,所以每个节点只需要处理一部分数据,从而减少了每个节点需要处理的数据量,提高了join的效率;优点:通过分布式的方式能够处理大数据集; 缺点:需要进行shuffle网络传输,如果传输速度较慢,可能会导致连接操作的效率较低。
相关推荐
小五传输2 小时前
常用的文件摆渡系统:让数据安全高效跨越网络界限
大数据·运维·安全
数据科学小丫4 小时前
数据分析与FineBI介绍
大数据·数据分析·finebi
ALex_zry5 小时前
Git大型仓库推送失败问题完整解决方案
大数据·git·elasticsearch
二进制coder6 小时前
Git Fork 开发全流程教程
大数据·git·elasticsearch
天硕国产存储技术站10 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件10 小时前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
SuperHeroWu711 小时前
【HarmonyOS 6】UIAbility跨设备连接详解(分布式软总线运用)
分布式·华为·harmonyos·鸿蒙·连接·分布式协同·跨设备链接
杜子不疼.11 小时前
【探索实战】从0到1打造分布式云原生平台:Kurator全栈实践指南
分布式·云原生
东哥说-MES|从入门到精通11 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
南飞测绘视界12 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司