spark数据倾斜的解决思路

数据倾斜是:多个分区中,某个分区的数据比其他分区的数据多的多

数据倾斜导致的问题:

  1. 导致某个spark任务耗时较长,导致整个任务耗时增加,甚至出现OOM
  2. 运行速度慢:主要发生在shuffle阶段,同样的key的数据太多了,导致了某个key所在的task需要处理的数据量太大了,远超其他的task的处理时间
    一条经验:一般出现运行速度异常慢,或者OOM的主要原因是数据倾斜

数据倾斜的解决方案:

  1. 过滤不需要的key:有些key是脏数据,直接过滤,降低数据量
  2. 调整并行度:增大partition的数量,这个每个task要处理的数据量就降低了,各个key可以均匀的分配到多个partition中。但是如果某个key的数据量就是很多,还是会出现数据倾斜
  3. 将reduce侧的join转化为map侧join:如用reduceBykey来替换groupByKey,让map侧也发生aggr聚合,减少shuffle的数据量
  4. 随机前缀扩容:如果某个key就是很多,在此key之前加随机数,来打散key,然后聚合
  5. 如果在加载数据时就发生了数据倾斜,可以在加载后进行repartition
  6. 对于join数据倾斜,一般是小表join大表,用map join ,避免reduce join(shuffle join)
    总结:一般在shuffle时容易发生数据倾斜,因此主要思路是降低shuffle的量

spark的map join 和reduce join的区别?

都是将2个数据集进行join连接的操作,但是实现方式不同

  1. map join:小表join 大表, 将小表通过广播的方式,广播到所有excutors节点的内存中,然后在每个excutor节点上将大数据和小数据进行连接,这样可以快速连接,从而提高了join的效率;优点:由于将小数据加载到内存中,join的速度很快;缺点:由于数据会加载到内存中,会导致内存溢出的问题。
  2. reduce join : 大表join大表, 将2个数据集都进行分区,然后将相同的key的数据分发到同一个节点上进行连接操作。因为同一个key的数据被分发到同一个节点上,所以每个节点只需要处理一部分数据,从而减少了每个节点需要处理的数据量,提高了join的效率;优点:通过分布式的方式能够处理大数据集; 缺点:需要进行shuffle网络传输,如果传输速度较慢,可能会导致连接操作的效率较低。
相关推荐
炼金士1 小时前
分布式虚拟 Actor 技术在码头生产调度中的应用研究
分布式·dapr·actor·集装箱码头
xuyanqiangCode2 小时前
KAFKA自动修改所有以**开头的主题脚本
分布式·kafka·linq
微学AI2 小时前
面向大数据与物联网的下一代时序数据库选型指南:Apache IoTDB 解析与应用
大数据·物联网·时序数据库
人大博士的交易之路3 小时前
今日行情明日机会——20251113
大数据·数据挖掘·数据分析·缠论·道琼斯结构·涨停板
B站计算机毕业设计之家3 小时前
基于Python+Django+双协同过滤豆瓣电影推荐系统 协同过滤推荐算法 爬虫 大数据毕业设计(源码+文档)✅
大数据·爬虫·python·机器学习·数据分析·django·推荐算法
WLJT1231231233 小时前
方寸之间藏智慧:家用电器的进化与生活革新
大数据·人工智能
陈辛chenxin4 小时前
【大数据技术04】数据可视化
大数据·python·信息可视化
wangqiaowq4 小时前
在streampark运行paimon-flink-action-1.20.0.jar
大数据·flink·jar
wangqiaowq4 小时前
基于FLINK + PAIMON + StarRocks 分层构建流式湖仓
大数据