【点云surface】基于多项式重建的平滑和法线估计

1 介绍

基于多项式重建的平滑和法线估计(Smoothing and normal estimation based on polynomial reconstruction)是一种常用的点云处理方法,用于平滑点云数据并估计每个点的法线信息。

该方法基于Moving Least Squares(MLS)算法,通过拟合每个点的邻域数据来进行平滑处理。在平滑过程中,使用多项式函数来逼近邻域内的点,然后通过对多项式函数求导来估计每个点的法线。

具体步骤如下:

  1. 对于每个点,确定其邻域范围,可以使用固定半径或固定邻居数量来定义邻域。

  2. 对于每个点的邻域数据,使用多项式函数来逼近这些点。多项式函数的阶数可以根据实际需求进行选择。

  3. 对于逼近得到的多项式函数,通过求导来计算每个点的法线向量。一阶导数表示法线的方向。

  4. 将平滑后的点云数据和估计的法线信息保存或用于后续处理。

​​​​​​

2 与普通法线估计的区别

与普通的法线估计相比,基于多项式重建的平滑和法线估计方法具有以下区别:

  1. 平滑效果更好:基于多项式重建的方法通过拟合邻域数据的多项式函数来进行平滑处理,相比于普通的法线估计方法,可以更好地去除噪声和不规则性,得到更平滑的点云数据。

  2. 考虑了局部几何特征:基于多项式重建的方法在拟合多项式函数时,会考虑点的局部几何特征,如曲率和法线方向。这使得法线估计更加准确,并且可以更好地捕捉点云中的细节和曲面变化。

  3. 参数可调性:基于多项式重建的方法提供了一些参数,如平滑半径和多项式阶数等,可以根据实际需求进行调整。这使得算法具有更大的灵活性,可以适应不同的点云数据和应用场景。

  4. 运算复杂度较高:与普通的法线估计方法相比,基于多项式重建的方法需要进行多项式函数的拟合和求导计算,因此运算复杂度较高。这可能会导致算法的计算时间较长,特别是在处理大规模点云数据时。

总的来说,基于多项式重建的平滑和法线估计方法在平滑效果和法线准确性方面具有优势,但计算复杂度较高。

3 什么时候用

通过使用基于多项式重建的平滑和法线估计方法,可以减少点云数据中的噪声,并提取出平滑的表面特征。这对于许多点云处理任务,如表面重建、物体识别和点云配准等都是非常有用的。

4 代码

cpp 复制代码
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/search/kdtree.h>
#include <pcl/surface/mls.h>
#include <pcl/visualization/cloud_viewer.h>

int main()
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>());
    pcl::io::loadPCDFile("/home/lrj/work/pointCloudData/raw.gitmirror.com_PointCloudLibrary_pcl_master_test_bun0.pcd", *cloud);

    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
    mls.setComputeNormals(true);
    mls.setInputCloud(cloud);
    mls.setPolynomialOrder(2); // 多项式函数的阶数
    mls.setSearchMethod(tree);
    mls.setSearchRadius(0.03);

    pcl::PointCloud<pcl::PointNormal> mls_points;
    mls.process(mls_points);


    pcl::visualization::CloudViewer vis("cloud viewer");
//    vis.showCloud(cloud,"clou0");

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2(new pcl::PointCloud<pcl::PointXYZ>());
    cloud2->resize(mls_points.size());
    for(size_t i=0; i < mls_points.size(); ++i)
    {
        cloud2->points[i].x = mls_points.points[i].x;
        cloud2->points[i].y = mls_points.points[i].y;
        cloud2->points[i].z = mls_points.points[i].z;

    }
    vis.showCloud(cloud2, "cloud2");

    while(!vis.wasStopped())
    {

    }
    return 0;
}

5 实际体会

基于多项式的平滑和法线估计,其实就是平滑点云去除噪声,并估计法线。

相关推荐
新加坡内哥谈技术1 分钟前
极客时间:在 Google Colab 上尝试 Prefix Tuning
人工智能
今天又学了啥7 分钟前
李飞飞World Labs开源革命性Web端3D渲染器Forge!3D高斯溅射技术首次实现全平台流畅运行
人工智能
极智视界17 分钟前
分类场景数据集大全「包含数据标注+训练脚本」 (持续原地更新)
人工智能·yolo·数据集·分类算法·数据标注·classification·分类数据集
翻滚的小@强33 分钟前
自动驾驶科普(百度Apollo)学习笔记
人工智能·自动驾驶·百度apollo
从零开始学习人工智能33 分钟前
从游戏到自动驾驶:互联网时代强化学习如何让机器学会自主决策?
人工智能·游戏·自动驾驶
幼稚园的山代王1 小时前
Prompt Enginering(提示工程)先进技术
java·人工智能·ai·chatgpt·langchain·prompt
dfsj660111 小时前
LLMs 系列科普文(14)
人工智能·深度学习·算法
摘取一颗天上星️1 小时前
深入解析机器学习的心脏:损失函数及其背后的奥秘
人工智能·深度学习·机器学习·损失函数·梯度下降
远方16091 小时前
20-Oracle 23 ai free Database Sharding-特性验证
数据库·人工智能·oracle
znhy60581 小时前
智能终端与边缘计算按章复习
人工智能·边缘计算