【点云surface】基于多项式重建的平滑和法线估计

1 介绍

基于多项式重建的平滑和法线估计(Smoothing and normal estimation based on polynomial reconstruction)是一种常用的点云处理方法,用于平滑点云数据并估计每个点的法线信息。

该方法基于Moving Least Squares(MLS)算法,通过拟合每个点的邻域数据来进行平滑处理。在平滑过程中,使用多项式函数来逼近邻域内的点,然后通过对多项式函数求导来估计每个点的法线。

具体步骤如下:

  1. 对于每个点,确定其邻域范围,可以使用固定半径或固定邻居数量来定义邻域。

  2. 对于每个点的邻域数据,使用多项式函数来逼近这些点。多项式函数的阶数可以根据实际需求进行选择。

  3. 对于逼近得到的多项式函数,通过求导来计算每个点的法线向量。一阶导数表示法线的方向。

  4. 将平滑后的点云数据和估计的法线信息保存或用于后续处理。

​​​​​​

2 与普通法线估计的区别

与普通的法线估计相比,基于多项式重建的平滑和法线估计方法具有以下区别:

  1. 平滑效果更好:基于多项式重建的方法通过拟合邻域数据的多项式函数来进行平滑处理,相比于普通的法线估计方法,可以更好地去除噪声和不规则性,得到更平滑的点云数据。

  2. 考虑了局部几何特征:基于多项式重建的方法在拟合多项式函数时,会考虑点的局部几何特征,如曲率和法线方向。这使得法线估计更加准确,并且可以更好地捕捉点云中的细节和曲面变化。

  3. 参数可调性:基于多项式重建的方法提供了一些参数,如平滑半径和多项式阶数等,可以根据实际需求进行调整。这使得算法具有更大的灵活性,可以适应不同的点云数据和应用场景。

  4. 运算复杂度较高:与普通的法线估计方法相比,基于多项式重建的方法需要进行多项式函数的拟合和求导计算,因此运算复杂度较高。这可能会导致算法的计算时间较长,特别是在处理大规模点云数据时。

总的来说,基于多项式重建的平滑和法线估计方法在平滑效果和法线准确性方面具有优势,但计算复杂度较高。

3 什么时候用

通过使用基于多项式重建的平滑和法线估计方法,可以减少点云数据中的噪声,并提取出平滑的表面特征。这对于许多点云处理任务,如表面重建、物体识别和点云配准等都是非常有用的。

4 代码

cpp 复制代码
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/search/kdtree.h>
#include <pcl/surface/mls.h>
#include <pcl/visualization/cloud_viewer.h>

int main()
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>());
    pcl::io::loadPCDFile("/home/lrj/work/pointCloudData/raw.gitmirror.com_PointCloudLibrary_pcl_master_test_bun0.pcd", *cloud);

    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
    mls.setComputeNormals(true);
    mls.setInputCloud(cloud);
    mls.setPolynomialOrder(2); // 多项式函数的阶数
    mls.setSearchMethod(tree);
    mls.setSearchRadius(0.03);

    pcl::PointCloud<pcl::PointNormal> mls_points;
    mls.process(mls_points);


    pcl::visualization::CloudViewer vis("cloud viewer");
//    vis.showCloud(cloud,"clou0");

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2(new pcl::PointCloud<pcl::PointXYZ>());
    cloud2->resize(mls_points.size());
    for(size_t i=0; i < mls_points.size(); ++i)
    {
        cloud2->points[i].x = mls_points.points[i].x;
        cloud2->points[i].y = mls_points.points[i].y;
        cloud2->points[i].z = mls_points.points[i].z;

    }
    vis.showCloud(cloud2, "cloud2");

    while(!vis.wasStopped())
    {

    }
    return 0;
}

5 实际体会

基于多项式的平滑和法线估计,其实就是平滑点云去除噪声,并估计法线。

相关推荐
凯禾瑞华养老实训室31 分钟前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
luckys.one32 分钟前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
湫兮之风2 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
~|Bernard|2 小时前
在 PyCharm 里怎么“点鼠标”完成指令同样的运行操作
算法·conda
战术摸鱼大师2 小时前
电机控制(四)-级联PID控制器与参数整定(MATLAB&Simulink)
算法·matlab·运动控制·电机控制
Christo32 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823402 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT3 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
好家伙VCC3 小时前
数学建模模型 全网最全 数学建模常见算法汇总 含代码分析讲解
大数据·嵌入式硬件·算法·数学建模
dlraba8023 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉