机器学习——词向量模型(CBOW代码实现-未开始)

本来是不打算做这个CBOW代码案例的,想快马加鞭看看前馈神经网络

毕竟书都买好了

可是...可是...我看书的时候,感觉有点儿困难,哭的很大声...

感觉自己脑细胞可能无法这么快接受

要不,还是退而求个稍微难度没那么大的事,想想自己还有什么是没实现的呢

哦!CBOW的案例还没做呢~

在一个巨人面前,我无耻地选择了暂避其锋芒

就好像,我本应该英勇地迈过刀山火海,可是我却怂了

而且,怂的有理有据:CBOW还没实现呢

只希望,CBOW案例,不要太难,不然我根本寸步难行,只能天天打游戏聊以自慰

首先,我计划做一个客服预料包,然后用CBOW去预测某个中间关键词

目标明确后,问题接踵而至

问题1-能否用中文语料:不行,因为中文分词很麻烦,我懒得去搞分词,重点是CBOW

英文语料很简单,因为英文是一个词跟另一个词,用空格分开,获取十分简单
问题2-头尾单词怎么解决:毕竟CBOW是获取关键词的前c个和后c个单词来训练的,但开头单词没有前c个单词,末尾单词没有后c个单词
解决办法:用额外的单词替代,比如None,应该问题不大的吧
问题3-按句还是按所有句取上下文:如果是按句取上下文,那么一个句子开头和末尾单词的下文就是None,语料文件有很多个句子,就会有很多个None。

如果按所有句取上下文,那整个语料文件就只有开头有None,末尾有None,None数量很少
解决办法:还是按句吧,毕竟两句之间的上下文,是毫无关系的。

按照【基于HierarchicalSoftmax的CBOW】正反向传播流程,来设计程序吧!

【基于HierarchicalSoftmax的CBOW】正向传播过程

  • 输入层:
    • 转换独热编码:将词典D转换为one-hot独热编码,
    • 获取上下文:按规定上下文的长度k,来截取语库C里的上下文单词 x x x和预测单词 y ∗ y* y∗
    • 获取独热编码:获取上下文单词x的独热编码向量 x 1 x1 x1, x 2 x2 x2, x 3 x3 x3, x 4 x4 x4,作为初始输入矩阵X=[ x 1 x1 x1, x 2 x2 x2, x 3 x3 x3, x 4 x4 x4]
  • 投影层:
    • 计算中间向量:
      • 将初始矩阵X乘以一个权重矩阵W,提取出各个初始向量 x 1 x1 x1, x 2 x2 x2, x 3 x3 x3, x 4 x4 x4的权重系数 w 1 w1 w1、 w 2 w2 w2、 w 3 w3 w3、 w 4 w4 w4
      • 将这些权重系数加和,作为中间向量h=[ w 1 w1 w1+ w 2 w2 w2+ w 3 w3 w3+ w 4 w4 w4],注意,这里的加和是按列加和
  • 输出层:
    • 构建huffman树,
    • 计算路径概率
    • 计算预测模型
相关推荐
冬奇Lab3 分钟前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程
CODECOLLECT28 分钟前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能
北京迅为33 分钟前
《【北京迅为】itop-3568开发板NPU使用手册》- 第 7章 使用RKNN-Toolkit-lite2
linux·人工智能·嵌入式·npu
我是一只puppy38 分钟前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI39 分钟前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
esmap42 分钟前
ESMAP 智慧消防解决方案:以数字孪生技术构建全域感知消防体系,赋能消防安全管理智能化升级
人工智能·物联网·3d·编辑器·智慧城市
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
芷栀夏1 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
用户5191495848451 小时前
CVE-2025-47812:Wing FTP Server 高危RCE漏洞分析与利用
人工智能·aigc
阿里云大数据AI技术1 小时前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能