卷积神经网络(AlexNet)鸟类识别

文章目录

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

来自专栏: 机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

python 复制代码
import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

python 复制代码
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

import pathlib
py 复制代码
data_dir = "bird_photos"

data_dir = pathlib.Path(data_dir)

3. 查看数据

py 复制代码
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

图片总数为: 565

二、数据预处理

文件夹 数量
Bananaquit 166 张
Black Throated Bushtiti 111 张
Black skimmer 122 张
Cockatoo 166张

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

py 复制代码
batch_size = 8
img_height = 227
img_width = 227
py 复制代码
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 452 files for training.
py 复制代码
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 113 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

py 复制代码
class_names = train_ds.class_names
print(class_names)
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

2. 可视化数据

py 复制代码
plt.figure(figsize=(10, 5))  # 图形的宽为10高为5

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(2, 4, i + 1)  

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")
py 复制代码
plt.imshow(images[1].numpy().astype("uint8"))

3. 再次检查数据

py 复制代码
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(8, 227, 227, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

4. 配置数据集

py 复制代码
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、AlexNet (8层)介绍

AleXNet使用了ReLU方法加快训练速度,并且使用Dropout来防止过拟合

AleXNet (8层)是首次把卷积神经网络引入计算机视觉领域并取得突破性成绩的模型。获得了ILSVRC 2012年的冠军,再top-5项目中错误率仅仅15.3%,相对于使用传统方法的亚军26.2%的成绩优良重大突破。和之前的LeNet相比,AlexNet通过堆叠卷积层使得模型更深更宽。

四、构建AlexNet (8层)网络模型

py 复制代码
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout,BatchNormalization,Activation

import numpy as np
seed = 7
np.random.seed(seed)

def AlexNet(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(96, (11,11), strides=4, name='block1_conv1')(input_tensor)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3,3), strides=2, name = 'block1_pool')(x)
    
    # 2nd block
    x = Conv2D(256, (5,5), padding='same', name='block2_conv1')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3,3), strides=2, name='block2_pool')(x)
    
    # 3rd block
    x = Conv2D(384, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    # 4th block
    x = Conv2D(384, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    
    # 5th block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = MaxPooling2D((3,3), strides=2, name = 'block5_pool')(x)
    
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dropout(0.5)(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    x = Dropout(0.5)(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=AlexNet(1000, (img_width, img_height, 3))
model.summary()
py 复制代码
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 227, 227, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 55, 55, 96)        34944     
_________________________________________________________________
batch_normalization (BatchNo (None, 55, 55, 96)        384       
_________________________________________________________________
activation (Activation)      (None, 55, 55, 96)        0         
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 27, 27, 96)        0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 27, 27, 256)       614656    
_________________________________________________________________
batch_normalization_1 (Batch (None, 27, 27, 256)       1024      
_________________________________________________________________
activation_1 (Activation)    (None, 27, 27, 256)       0         
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 13, 13, 256)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 13, 13, 384)       885120    
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 13, 13, 384)       1327488   
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 13, 13, 256)       884992    
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 6, 6, 256)         0         
_________________________________________________________________
flatten (Flatten)            (None, 9216)              0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              37752832  
_________________________________________________________________
dropout (Dropout)            (None, 4096)              0         
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
dropout_1 (Dropout)          (None, 4096)              0         
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 62,379,752
Trainable params: 62,379,048
Non-trainable params: 704
_________________________________________________________________

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
py 复制代码
# 设置优化器,我这里改变了学习率。
# opt = tf.keras.optimizers.Adam(learning_rate=1e-7)

model.compile(optimizer="adam",
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

六、训练模型

py 复制代码
epochs = 20

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)
py 复制代码
Epoch 1/20
57/57 [==============================] - 5s 30ms/step - loss: 9.2789 - accuracy: 0.2166 - val_loss: 3.2340 - val_accuracy: 0.3363
Epoch 2/20
57/57 [==============================] - 1s 14ms/step - loss: 0.9329 - accuracy: 0.6224 - val_loss: 1.1778 - val_accuracy: 0.5310
Epoch 3/20
57/57 [==============================] - 1s 14ms/step - loss: 0.7438 - accuracy: 0.6747 - val_loss: 1.9651 - val_accuracy: 0.5133
Epoch 4/20
57/57 [==============================] - 1s 14ms/step - loss: 0.8875 - accuracy: 0.7025 - val_loss: 1.5589 - val_accuracy: 0.4602
Epoch 5/20
57/57 [==============================] - 1s 14ms/step - loss: 0.6116 - accuracy: 0.7424 - val_loss: 0.9914 - val_accuracy: 0.4956
Epoch 6/20
57/57 [==============================] - 1s 15ms/step - loss: 0.6258 - accuracy: 0.7520 - val_loss: 1.1103 - val_accuracy: 0.5221
Epoch 7/20
57/57 [==============================] - 1s 13ms/step - loss: 0.5138 - accuracy: 0.8034 - val_loss: 0.7832 - val_accuracy: 0.6726
Epoch 8/20
57/57 [==============================] - 1s 14ms/step - loss: 0.5343 - accuracy: 0.7940 - val_loss: 6.1064 - val_accuracy: 0.4602
Epoch 9/20
57/57 [==============================] - 1s 14ms/step - loss: 0.8667 - accuracy: 0.7606 - val_loss: 0.6869 - val_accuracy: 0.7965
Epoch 10/20
57/57 [==============================] - 1s 16ms/step - loss: 0.5785 - accuracy: 0.8141 - val_loss: 1.3631 - val_accuracy: 0.5310
Epoch 11/20
57/57 [==============================] - 1s 15ms/step - loss: 0.4929 - accuracy: 0.8109 - val_loss: 0.7191 - val_accuracy: 0.7345
Epoch 12/20
57/57 [==============================] - 1s 15ms/step - loss: 0.4141 - accuracy: 0.8507 - val_loss: 0.4962 - val_accuracy: 0.8496
Epoch 13/20
57/57 [==============================] - 1s 15ms/step - loss: 0.2591 - accuracy: 0.9148 - val_loss: 0.8015 - val_accuracy: 0.8053
Epoch 14/20
57/57 [==============================] - 1s 15ms/step - loss: 0.2683 - accuracy: 0.9079 - val_loss: 0.5451 - val_accuracy: 0.8142
Epoch 15/20
57/57 [==============================] - 1s 14ms/step - loss: 0.2925 - accuracy: 0.9096 - val_loss: 0.6668 - val_accuracy: 0.8584
Epoch 16/20
57/57 [==============================] - 1s 14ms/step - loss: 0.4009 - accuracy: 0.8804 - val_loss: 1.1609 - val_accuracy: 0.6372
Epoch 17/20
57/57 [==============================] - 1s 14ms/step - loss: 0.4375 - accuracy: 0.8446 - val_loss: 0.9854 - val_accuracy: 0.7965
Epoch 18/20
57/57 [==============================] - 1s 14ms/step - loss: 0.3085 - accuracy: 0.8926 - val_loss: 0.6477 - val_accuracy: 0.8761
Epoch 19/20
57/57 [==============================] - 1s 15ms/step - loss: 0.1200 - accuracy: 0.9538 - val_loss: 1.8996 - val_accuracy: 0.5398
Epoch 20/20
57/57 [==============================] - 1s 15ms/step - loss: 0.3378 - accuracy: 0.9095 - val_loss: 0.9337 - val_accuracy: 0.8053

七、模型评估

py 复制代码
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

八、保存and加载模型

py 复制代码
 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/my_model.h5')

九、预测

py 复制代码
# 采用加载的模型(new_model)来看预测结果

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(2, 4, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy().astype("uint8"))
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = new_model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")
相关推荐
九亿AI算法优化工作室&几秒前
DBO优化GRNN回归预测matlab
人工智能·python·算法·matlab·数据挖掘·回归·机器人
KuaFuAI16 分钟前
百度“秒哒”能开始内测了?李彦宏:假!
人工智能·百度·aigc·码上飞·ai产品榜·一句话生成一个应用
羑悻的小杀马特20 分钟前
计算机视觉:撕裂时空的视觉算法革命狂潮
人工智能·算法·计算机视觉
l1m0_21 分钟前
什么是波士顿矩阵,怎么制作?AI工具一键生成战略分析图!
人工智能·ai·信息可视化·矩阵·aigc·波士顿矩阵
Icomi_23 分钟前
【PyTorch】3.张量类型转换
c语言·c++·人工智能·pytorch·python·深度学习·神经网络
GISer Liu1 小时前
深入理解Transformer中的解码器原理(Decoder)与掩码机制
开发语言·人工智能·python·深度学习·机器学习·llm·transformer
金融OG1 小时前
6. 马科维茨资产组合模型+政策意图AI金融智能体(DeepSeek-V3)增强方案(理论+Python实战)
大数据·人工智能·python·算法·机器学习·数学建模·金融
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
c++·人工智能·学习·ubuntu·计算机视觉·矩阵
发呆小天才O.oᯅ1 小时前
自然语言处理——从原理、经典模型到应用
人工智能·深度学习·自然语言处理·transformer
道友老李1 小时前
【自然语言处理(NLP)】循环神经网络RNN
人工智能·自然语言处理