Spark RDD、DataFrame和Dataset的区别和联系

一、三种数据介绍

是Spark中的三种不同的数据结构,它们都可以用于分布式数据处理,但是它们的实现方式和使用方法略有不同。

  1. RDD(弹性分布式数据集)

RDD是Spark最初的核心数据结构 ,它是一个分布式的、只读的、可容错的数据集合。RDD可以通过并行化的方式在集群中进行分布式计算,支持多种操作,如转换操作(如map、filter、join等)和行动操作(如count、collect、reduce等)。

  1. DataFrame

DataFrame是一种以列为中心的数据结构,类似于关系型数据库中的表。DataFrame是在RDD的基础上发展而来的,它添加了模式信息即每列数据的名称和类型。DataFrame可以通过Spark SQL查询进行操作,支持SQL语句和DataFrame API。DataFrame还支持一些高级操作,如窗口函数和聚合函数等。

  1. Dataset
    Dataset是Spark 1.6中引入的新概念,它是DataFrame的类型安全版本。Dataset可以包含任何类型的对象,并且提供了类型安全的转换操作和编译时检查。Dataset是在DataFrame的基础上发展而来的,它支持Spark SQL查询和DataFrame API,可以通过编程语言的类型系统来保证数据的类型安全性

二、联系

  1. DataFrame和Dataset都是在RDD的基础上发展而来的,它们都是为了方便数据处理而设计的。
  2. DataFrame和Dataset都支持Spark SQL查询和DataFrame API,可以使用相同的操作来处理数据。
  3. 在Spark 2.x中,DataFrame和Dataset已经被合并成为一个概念,即Dataset,这意味着在使用Spark 2.x时,DataFrame和Dataset的操作方式是相同的。

三、区别

  1. RDD是一个分布式的、只读的、可容错的数据集合,没有模式信息,需要手动编写代码来处理数据
  2. DataFrame是一种以列为中心的数据结构,添加了模式信息,可以通过Spark SQL查询进行操作,支持SQL语句和DataFrame API。
  3. Dataset是DataFrame的类型安全版本,可以通过编程语言的类型系统来保证数据的类型安全性。

总之,RDD、DataFrame和Dataset都是Spark中的重要概念,它们各自有不同的优势和适用场景。在实际应用中,需要根据具体的场景选择合适的数据结构来处理数据。

相关推荐
会飞的老朱19 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
uesowys1 天前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 天前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw1 天前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe1 天前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥1 天前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿1 天前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿1 天前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊1211 天前
已有安全措施确认(上)
大数据·网络
人道领域1 天前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法