Pyspark分布式访问NebulaGraph图数据库

本教程以部署单机版Spark为例进行演示,正式环境可部署集群版Spark

一、安装 Java

PySpark 依赖于 Spark,而 Spark 又依赖于 Java,所以,首先要确保你的机器上安装了 Java。

1、下载安装java8

复制代码
sudo apt update
sudo apt install openjdk-8-jdk

2、配置环境变量

复制代码
nano ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export PATH=$JAVA_HOME/bin:$PATH

source ~/.bashrc

二、本地安装Spark

1、下载 Spark

访问 Spark 官网下载页面,选择你需要的版本(例如,选择 3.x和 Hadoop 3.x),然后用 wget 下载,本教程使用Spark2.4.0

复制代码
wget http://archive.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.6.tgz

2、解压 Spark 压缩包

复制代码
tar -xvzf spark-2.4.0-bin-hadoop2.6.tgz

3、移动到目录 /opt/spark

复制代码
 sudo mv spark-2.4.0-bin-hadoop2.6 /opt/spark

4、配置环境变量

为了让 Spark 能在命令行中使用,你需要设置环境变量。打开.bashrc 文件:

复制代码
nano ~/.bashrc

在文件末尾添加以下内容:

在此步骤将python解释器一起进行配置(本教程使用的是python 3.7)

复制代码
export SPARK_HOME=/opt/spark/spark-2.4.0-bin-hadoop2.6
export PATH=$SPARK_HOME/bin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH
export PYSPARK_PYTHON=/home/dell/anaconda3/envs/pyspark_env/bin/python

source ~/.bashrc

三、Python环境安装Pyspark第三方库

Pyspark第三方库版本尽量与Spark版本一直,本教程都为2.4.0

复制代码
pip install pyspark==2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

四、Pyspark验证安装

在终端输入:

复制代码
pyspark

你应该能看到类似以下的输出:

五、nebula-spark-connector下载

Nebula-Spark-Connector 是一个用于将 Nebula Graph 数据库与 Apache Spark 集成的连接器,它使得用户能够在 Spark 环境中轻松地读取、写入和处理 Nebula Graph 数据库中的图数据。

必须下载此组件。

spark使用2.x版本,Nebula-Spark-Connector尽量使用3.3以下版本。

Nebula-Spark-Connector下载地址:

https://repo1.maven.org/maven2/com/vesoft/nebula-spark-connector/

六、Pyspark连接NebulaGraph

复制代码
from pyspark.sql import SparkSession

spark = SparkSession.builder \
    .appName("NebulaVisualization") \
    .master("local[*]") \
    .config("spark.jars", "/mnt/data/nebula-spark-connector-3.3.0.jar") \
    .config("spark.driver.extraClassPath", "/mnt/data/nebula-spark-connector-3.3.0.jar") \
    .config("spark.executor.extraClassPath", "/mnt/data/nebula-spark-connector-3.3.0.jar") \
    .getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

try:
    df = spark.read \
        .format("com.vesoft.nebula.connector.NebulaDataSource") \
        .option("metaAddress", "10.2.7.209:9559") \
        .option("spaceName", "construction_ontology") \
        .option("label", "dependsOnPreTask") \
        .option("type", "edge") \
        .option("returnCols", "") \
        .option("partitionNumber", "10") \
        .option("nebula.user", "root") \
        .option("nebula.password", "nebula") \
        .load()
    df.show()
    print("连接器验证成功!")

except Exception as e:
    print(f"连接器验证失败:{e}")
finally:
    spark.stop()

注意:spark参数 spark.jars、spark.driver.extraClassPath、

spark.executor.extraClassPath需要配置第四步下载的nebula-spark-connector jar

相关推荐
太阳伞下的阿呆18 小时前
kafka与zero-copy
分布式·kafka
心态特好18 小时前
从缓存到分库分表:MySQL 高并发海量数据解决方案全解析
数据库·mysql·缓存
TDengine (老段)18 小时前
TDengine 数据函数 LEAST 用户手册
大数据·数据库·sql·时序数据库·tdengine
骇客野人18 小时前
【软考备考】 NoSQL数据库有哪些,键值型、文档型、列族型、图数据库的特点与适用场景
数据库·nosql
BD_Marathon18 小时前
【MySQL】管理
数据库·mysql
霍志杰18 小时前
记一次csv和xlsx之间的转换处理
python
倔强的石头_19 小时前
金仓多模数据库平替 MongoDB:电子证照国产化的技术实操与价值突破
数据库
测试199819 小时前
Jmeter是如何实现接口关联的?
自动化测试·软件测试·python·测试工具·jmeter·职场和发展·接口测试
Go高并发架构_王工19 小时前
MySQL性能优化案例分析:从问题到解决方案
数据库·mysql·性能优化
没有bug.的程序员19 小时前
云原生与分布式架构的完美融合:从理论到生产实践
java·分布式·微服务·云原生·架构