flink-cep实践

java 复制代码
package com.techwolf.hubble;

import com.alibaba.fastjson.JSONObject;
import com.techwolf.hubble.constant.Config;
import com.techwolf.hubble.model.TestEvent;
import org.apache.flink.api.common.eventtime.TimestampAssigner;
import org.apache.flink.api.common.eventtime.TimestampAssignerSupplier;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternFlatSelectFunction;
import org.apache.flink.cep.PatternFlatTimeoutFunction;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.SimpleCondition;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;

import java.util.List;
import java.util.Map;


/**
 * Hello world!
 *
 */
public class App {

    public static void main(String[] args) throws Exception{
        //初始化环境
        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //定义时间戳提取器作为输入流分配时间戳和水位线
        WatermarkStrategy<TestEvent> watermarkStrategy=WatermarkStrategy.<TestEvent>
                forMonotonousTimestamps().withTimestampAssigner(new EventTimeAssignerSupplier());

        DataStream<TestEvent> inputDataSteam=env.fromElements(
                new TestEvent("1","A",System.currentTimeMillis()-100*1000,"1"),
                new TestEvent("1","A",System.currentTimeMillis()-85*1000,"2"),
                new TestEvent("1","A",System.currentTimeMillis()-80*1000,"3"),
                new TestEvent("1","A",System.currentTimeMillis()-75*1000,"4"),
                new TestEvent("1","A",System.currentTimeMillis()-60*1000,"5"),
                new TestEvent("1","A",System.currentTimeMillis()-55*1000,"6"),
                new TestEvent("1","A",System.currentTimeMillis()-40*1000,"7"),
                new TestEvent("1","A",System.currentTimeMillis()-35*1000,"8"),
                new TestEvent("1","A",System.currentTimeMillis()-20*1000,"9"),
                new TestEvent("1","A",System.currentTimeMillis()-10*1000,"10"),
                new TestEvent("1","B",System.currentTimeMillis()-5*1000,"11")
        ).assignTimestampsAndWatermarks(watermarkStrategy);

        Pattern<TestEvent,TestEvent> pattern=Pattern.<TestEvent>begin("begin")
                .where(new SimpleCondition<TestEvent>() {
                    @Override
                    public boolean filter(TestEvent testEvent) throws Exception {
                        return testEvent.getAction().equals("A");
                    }
                }).
                followedBy("end")
                .where(new SimpleCondition<TestEvent>() {
                    @Override
                    public boolean filter(TestEvent testEvent) throws Exception {
                        return testEvent.getAction().equals("B");
                    }
                }).within(Time.seconds(10));


        PatternStream<TestEvent> patternStream=CEP.pattern(inputDataSteam.keyBy(TestEvent::getId),pattern);
        OutputTag<TestEvent> timeOutTag=new OutputTag<TestEvent>("timeOutTag"){};

        //处理匹配结果
        SingleOutputStreamOperator<TestEvent> twentySingleOutputStream=patternStream
                .flatSelect(timeOutTag,new EventTimeOut(),new FlatSelect())
                .uid("match_twenty_minutes_pattern");
        DataStream<String> result=twentySingleOutputStream.getSideOutput(timeOutTag).map(new MapFunction<TestEvent, String>() {
            @Override
            public String map(TestEvent testEvent) throws Exception {
                return JSONObject.toJSONString(testEvent);
            }
        });
        result.print();
        env.execute(Config.JOB_NAME);
    }

    public static class EventTimeOut implements PatternFlatTimeoutFunction<TestEvent,TestEvent> {
        private static final long serialVersionUID = -2471077777598713906L;
        @Override
        public void timeout(Map<String, List<TestEvent>> map, long l, Collector<TestEvent> collector) throws Exception {
            if (null != map.get("begin")) {
                for (TestEvent event : map.get("begin")) {
                    collector.collect(event);
                }
            }
        }
    }

    public static class FlatSelect implements PatternFlatSelectFunction<TestEvent,TestEvent> {
        private static final long serialVersionUID = 1753544074226581611L;
        @Override
        public void flatSelect(Map<String, List<TestEvent>> map, Collector<TestEvent> collector) throws Exception {
            if (null != map.get("begin")) {
                for (TestEvent event : map.get("begin")) {
                    collector.collect(event);
                }
            }
        }
    }

    public static class EventTimeAssignerSupplier implements TimestampAssignerSupplier<TestEvent> {
        private static final long serialVersionUID = -9040340771307752904L;

        @Override
        public TimestampAssigner<TestEvent> createTimestampAssigner(Context context) {
            return new EventTimeAssigner();
        }
    }

    public static class EventTimeAssigner implements TimestampAssigner<TestEvent> {
        @Override
        public long extractTimestamp(TestEvent event, long l) {
            return event.getEventTime();
        }
    }
}
相关推荐
2501_933509071 小时前
无锡制造企税惠防错指南:知了问账帮守政策红利线
大数据·人工智能·微信小程序
F36_9_2 小时前
如何在沟通不畅导致误解后进行修复
大数据
青云交2 小时前
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战
flink·spark·工业互联网·预测性维护·实时数据处理·java 大数据·设备协同制造
数字化脑洞实验室2 小时前
智能决策系统落地后如何进行数据集成与安全保障?
大数据
微学AI5 小时前
面向大数据与物联网的下一代时序数据库选型指南:Apache IoTDB 解析与应用
大数据·物联网·时序数据库
人大博士的交易之路6 小时前
今日行情明日机会——20251113
大数据·数据挖掘·数据分析·缠论·道琼斯结构·涨停板
B站计算机毕业设计之家6 小时前
基于Python+Django+双协同过滤豆瓣电影推荐系统 协同过滤推荐算法 爬虫 大数据毕业设计(源码+文档)✅
大数据·爬虫·python·机器学习·数据分析·django·推荐算法
WLJT1231231236 小时前
方寸之间藏智慧:家用电器的进化与生活革新
大数据·人工智能
陈辛chenxin6 小时前
【大数据技术04】数据可视化
大数据·python·信息可视化