【数据结构】二叉排序树(c风格、结合c++引用)

目录

[1 基本概念](#1 基本概念)

结构体定义

各种接口

[2 二叉排序树的构建和中序遍历](#2 二叉排序树的构建和中序遍历)

递归版单次插入

非递归版单次插入

[3 二叉排序树的查找](#3 二叉排序树的查找)

非递归版本

递归版本

[4 二叉排序树的删除(难点)](#4 二叉排序树的删除(难点))


1 基本概念

普通二叉排序树是一种简单的数据结构,节点的值根据特定顺序(通常是升序或降序)排列。然而,如果普通二叉排序树不平衡,即左、右子树的高度相差很大时,查询效率可能会降低。因此引出了avl树、红黑树等一系列高阶数据结构。

基本性质:

  • 若它的左子树不空,则左子树 上所有结点的值均小于根结点的值。
  • 若它的右子树不空,则右子树上所有结点的值均大于根结点的值。
  • 它的左、右子树均为为⼆叉排序树。
  • 二叉排序树的查找时间复杂度为树的高度,即为O(以2为底N的对数) ,下面全写成O(logN)
  • 二叉排序树的中序遍历输出是一个递增的数列。

结构体定义

cpp 复制代码
typedef struct BSTreeNode
{
	int val;
	struct BSTreeNode* left;
	struct BSTreeNode* right;
}BSTNode,*BiTree;

各种接口

​​​​​​​

关于用到C++中的引用:

BSTNode是结构体struct BSTNode的别名,BiTree是结构体struct BSTNode指针。

在链表中,首次插入时需要修改头节点,由于头节点的定义也是一个指针,所以要修改一个一级指针,必须传入二级指针或者一级指针的引用,二叉树也是一样,首次插入需要修改根节点的指向,所以这里用引用,当然也可以用二级指针,严蔚敏老师编写的数据结构中也经常用到C++的引用。

而再次或多次进行插入时,我们用cur去遍历链表或二叉树,其实是修改链表和二叉树的一个个结构体,这时我们只需要结构体指针,其实就只需要一级指针即可。

因此,我们直接用二级指针或一级指针的引用,就能解决所有的问题。


2 二叉排序树的构建和中序遍历

构建原则:

①根节点为空,先构建根节点。

②插入节点的值小于根节点的值,去根节点的左子树寻找插入位置。

③插入节点的值大于根节点的值,去根节点的右子树寻找插入位置。

cpp 复制代码
void Create(BiTree& root,int* a,int n)
{
	for (int i = 0; i < n; ++i)
	{
		BST_InsertR(root, a[i]);
        //BST_Insert(root, a[i]);
	}
}

遍历数组O(N),数组每个元素插入O(logN),因此构建的时间复杂度是O(NlogN)

递归版单次插入

cpp 复制代码
int BST_InsertR(BiTree& root, int x)
{
    //先申请节点
	BSTNode* newnode = (BiTree)malloc(sizeof(BSTNode));
	if (newnode == nullptr)
	{
		perror("malloc fail");
		exit(-1);
	}
	newnode->val = x;
	newnode->left = newnode->right = nullptr;
	

    //进行插入
	if (root == nullptr)//空树或者走到空
	{
		root = newnode;
		return 1;//插入成功
	}

	if (root->val == x)
		return -1;//插入失败,节点元素值不能相同

	if (root->val > x)//x小于根节点的值,就去左子树插入
		return BST_InsertR(root->left, x);

	if (root->val < x)//x大于于根节点的值,就去右子树插入
		return BST_InsertR(root->right, x);
}

非递归版单次插入

⭕定义两个指针,cur和prev,prev指向cur的根节点,cur最后走到空,对prev的左右指针进行操作,比对prev->val和x,如果val<x,就让prev->right指向新节点,反之。

cpp 复制代码
int BST_Insert(BiTree& root, int x)
{
	//二叉排序树左孩子的值比根的值要小,右孩子的值比根的值要大
	BSTNode* newnode = (BiTree)malloc(sizeof(BSTNode));
	if (newnode == nullptr)
	{
		perror("malloc fail");
		exit(-1);
	}
	newnode->val = x;
	newnode->left = newnode->right = nullptr;

	//第一次进来root为空
	if (root == nullptr)
	{
		root = newnode;
		return 0;
	}
	//第二次开始往后遍历
	BSTNode* cur = root;
	BSTNode* prev = nullptr;
	while (cur)//让cur走到空
	{
		prev = cur;
		if (cur->val < x)
		{
			cur = cur->right;
		}
		else if (cur->val > x)
		{
			cur = cur->left;
		}
		else
		{
			return -1;//插入失败,不能有元素相等的情况
		}
	}
	if (prev->val < x)
	{
		prev->right = newnode;
	}
	if (prev->val > x)
	{
		prev->left = newnode;
	}
	return 0;//插入成功
}

假设我们用这个数组去构建一棵树:

结果是这样的:

中序遍历:

cpp 复制代码
void InOrder(BiTree root)
{
	if (root == nullptr)//空树或走到空
		return;
	InOrder(root->left);//左子树
	printf("%d ", root->val);//根
	InOrder(root->right);//右子树
}

输出的结果一定是一个递增序列,因此二叉排序树的中序遍历才有意义。

3 二叉排序树的查找

查找原则:

①所查找的值比当前节点的值要小,就去左子树找

②所查找的值比当前节点的值要大,就去右子树找

③查找成功,返回结构体指针BSTNode*/BiTree

二叉排序树的最大查找次数,就是树的深度,类似于折半查找,每查一次排除一半的树。

因此二叉排序树的查找时间复杂度为O(logN) 。

非递归版本

cpp 复制代码
BSTNode* BinarySearch(BiTree root,int x)
{
	BSTNode* cur = root;
	while (cur)
	{
		if (cur->val < x)
		{
			cur = cur->right;
		}
		else if (cur->val > x)
		{
			cur = cur->left;
		}
		else
		{
			return cur;
		}
	}
	return nullptr;
}

递归版本

cpp 复制代码
BSTNode* BinarySearchR(BiTree root, int x)
{
	if (root == nullptr)//空树或者找到空了还没找到
		return nullptr;
	if (x == root->val)
		return root;
	if (x > root->val)//大于就去右子树找
		return BinarySearchR(root->right, x);
	if(x < root->val)//小于就去左子树找
		return BinarySearchR(root->left, x);
}

4 二叉排序树的删除(难点)

删除原则:

①删除节点的右子树为空,左子树不为空,把左子树顶上来。

②删除节点的左子树为空,右子树不为空,把右子树顶上来。

③删除节点的左右子树都不为空,要么在左子树中找最大的数据和根的数据交换,要么在右子树中找最小的数据和根的数据交换。

cpp 复制代码
void DeleteNode(BiTree& root, int x)
{
	if (root == nullptr)//找不到或者根为空,直接返回
	{
		return;
	}

	//先找后删除,递归
	if (x < root->val)
	{
		DeleteNode(root->left, x);
	}
	if (x > root->val)
	{
		DeleteNode(root->right, x);
	}
	//找到了,执行删除
	if (root->val == x)
	{
		if (root->left == nullptr)//左子树为空,把右子树顶上去
		{
			BiTree tmp = root;
			root = root->right;
			free(tmp);
		}
		else if (root->right == nullptr)//右子树为空,把左子树顶上去
		{
			BiTree tmp = root;
			root = root->left;
			free(tmp);
		}
		else//左右子树均不为空,要么在左子树中找最大的数据和根的数据交换,要么在右子树中找最小的数据和根的数据交换
			//采用前者即可,左子树的最大数据就是左子树的最右结点
		{
			BiTree left = root->left;
			while (left->right)
			{
				left = left->right;
			}
			root->val = left->val;
			//free(left);//不能这么做,万一这个结点有左子树怎么办?
			//只能重新在T的左子树找这个结点,复用递归删除这个结点
			DeleteNode(root->left, left->val);
		}
	}
}

图解何为"顶上来"

由于函数传参用到引用,因此root就是上一层函数root->left或者root->right的别名

定义指针tmp 去指向root形参 ,root形参用**root(1)**表示一下:

这时我们想让root->right变为root(1)->right,而root(1)就是root->right的别名,因此我们直接让root(1)=root(1)->right,然后去free(tmp),用代码表示就是这样:


同理,右子树为空,把左子树顶上去:


当左右子树都不为空时,要么去左子树中找最大的数据去替换删除节点,要么去右子树中找最小的数据去替换删除节点。

而左子树中的最大数据位于左子树的最右深处节点,右子树中的最小数据位于右子树的最左深处节点。

什么是"替换":把要删除的根节点的值与左子树最右节点的值交换,然后"删除"掉左子树最右节点;或者把要删除的根节点的值与右子树最左节点的值交换,然后"删除"掉右子树最左节点。

何为删除?真的是直接free掉吗?

删除59,那它的左子树咋办?直接free就坑了!

复用函数去递归删除59,让59的左子树顶上去:

相关推荐
lb36363636363 小时前
介绍一下数组(c基础)(详细版)
c语言
李元豪3 小时前
【智鹿空间】c++实现了一个简单的链表数据结构 MyList,其中包含基本的 Get 和 Modify 操作,
数据结构·c++·链表
我不是星海3 小时前
1.集合体系补充(1)
java·数据结构
UestcXiye4 小时前
《TCP/IP网络编程》学习笔记 | Chapter 9:套接字的多种可选项
c++·计算机网络·ip·tcp
一丝晨光5 小时前
编译器、IDE对C/C++新标准的支持
c语言·开发语言·c++·ide·msvc·visual studio·gcc
丶Darling.5 小时前
Day40 | 动态规划 :完全背包应用 组合总和IV(类比爬楼梯)
c++·算法·动态规划·记忆化搜索·回溯
奶味少女酱~5 小时前
常用的c++特性-->day02
开发语言·c++·算法
我是哈哈hh6 小时前
专题十八_动态规划_斐波那契数列模型_路径问题_算法专题详细总结
c++·算法·动态规划
执笔者5486 小时前
C语言:函数栈帧的创建与销毁
c语言
_小柏_7 小时前
C/C++基础知识复习(15)
c语言·c++