Redis持久化与主从哨兵架构剖析

Redis持久化

RDB快照(snapshot)

在默认情况下, Redis 将内存数据库快照保存在名字为 dump.rdb 的二进制文件中。可以对 Redis 进行设置, 让它在" N 秒内数据集至少有 M 个改动"这一条件被满足时, 自动保存一次数据集。

比如说, 以下设置会让 Redis 在满足" 60 秒内有至少有 1000 个键被改动"这一条件时, 自动保存一次数据集:

save 60 1000 //关闭RDB只需要将所有的save保存策略注释掉即可

还可以手动执行命令生成RDB快照,进入redis客户端执行命令save或bgsave可以生成dump.rdb文件,每次命令执行都会将所有redis内存快照到一个新的rdb文件里,并覆盖原有rdb快照文件。

bgsave的写时复制(COW)机制

Redis 借助操作系统提供的写时复制技术(Copy-On-Write, COW),在生成快照的同时,依然可以正常处理写命令。简单来说,bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。此时,如果主线程对这些数据也都是读操作,那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据,那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。

save与bgsave对比

配置自动生成rdb文件后台使用的是bgsave方式。

AOF(append-only file)

快照功能并不是非常耐久(durable): 如果 Redis 因为某些原因而造成故障停机, 那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。从 1.1 版本开始, Redis 增加了一种完全耐久的持久化方式: AOF 持久化,将修改的每一条指令记录进文件appendonly.aof中(先写入os cache,每隔一段时间fsync到磁盘)

比如执行命令"set zxzg 666",aof文件里会记录如下数据

bash 复制代码
*3
$3
set
$4
zxzg
$3
666

这是一种resp协议格式数据,星号后面的数字代表命令有多少个参数,$号后面的数字代表这个参数有几个字符

注意,如果执行带过期时间的set命令,aof文件里记录的是并不是执行的原始命令,而是记录key过期的时间戳

比如执行"set lg 888 ex 1000",对应aof文件里记录如下

bash 复制代码
*3
$3
set
$2
lg
$3
888
*3
$9
PEXPIREAT
$2
lg
$13
1604249786301

可以通过修改配置文件来打开 AOF 功能:

bash 复制代码
appendonly yes

从现在开始, 每当 Redis 执行一个改变数据集的命令时(比如 SET), 这个命令就会被追加到 AOF 文件的末尾。

这样的话, 当 Redis 重新启动时, 程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的。

你可以配置 Redis 多久才将数据 fsync 到磁盘一次。

有三个选项:

perl 复制代码
appendfsync always:每次有新命令追加到 AOF 文件时就执行一次 fsync ,非常慢,也非常安全。
appendfsync everysec:每秒 fsync 一次,足够快,并且在故障时只会丢失 1 秒钟的数据。
appendfsync no:从不 fsync ,将数据交给操作系统来处理。更快,也更不安全的选择。

推荐(并且也是默认)的措施为每秒 fsync 一次, 这种 fsync 策略可以兼顾速度和安全性。

AOF重写

AOF文件里可能有太多没用指令,所以AOF会定期根据内存的最新数据生成aof文件

例如,执行了如下几条命令:

ruby 复制代码
127.0.0.1:6379> incr readcount
(integer) 1
127.0.0.1:6379> incr readcount
(integer) 2
127.0.0.1:6379> incr readcount
(integer) 3
127.0.0.1:6379> incr readcount
(integer) 4
127.0.0.1:6379> incr readcount
(integer) 5

重写后AOF文件里变成

bash 复制代码
*3
$3
SET
$2
readcount
$1
5

如下两个配置可以控制AOF自动重写频率

arduino 复制代码
 # auto‐aof‐rewrite‐min‐size 64mb //aof文件至少要达到64M才会自动重写,文件太小恢复速度本来就
很快,重写的意义不大
# auto‐aof‐rewrite‐percentage 100 //aof文件自上一次重写后文件大小增长了100%则再次触发重写

当然AOF还可以手动重写,进入redis客户端执行命令bgrewriteaof重写AOF

注意,AOF重写redis会fork出一个子进程去做(与bgsave命令类似),不会对redis正常命令处理有太多影响

RDB 和 AOF ,应该用哪一个?

生产环境可以都启用,redis启动时如果既有rdb文件又有aof文件则优先选择aof文件恢复数据,因为aof一般来说数据更全一点。

Redis 4.0 混合持久化

重启 Redis 时,我们很少使用 RDB来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志性能相对 RDB来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。 Redis 4.0 为了解决这个问题,带来了一个新的持久化选项------混合持久化。通过如下配置可以开启混合持久化(必须先开启aof):

bash 复制代码
aof‐use‐rdb‐preamble yes

如果开启了混合持久化,AOF在重写时,不再是单纯将内存数据转换为RESP命令写入AOF文件,而是将重写这一刻之前的内存做RDB快照处理,并且将RDB快照内容和增量的AOF修改内存数据的命令存在一起,都写入新的AOF文件,新的文件一开始不叫appendonly.aof,等到重写完新的AOF文件才会进行改名,覆盖原有的AOF文件,完成新旧两个AOF文件的替换。于是在 Redis 重启的时候,可以先加载 RDB 的内容,然后再重放增量 AOF 日志就可以完全替代之前的AOF 全量文件重放,因此重启效率大幅得到提升

混合持久化AOF文件结构如下

Redis数据备份策略:

  1. 写crontab定时调度脚本,每小时都copy一份rdb或aof的备份到一个目录中去,仅仅保留最近48 小时的备份
  2. 每天都保留一份当日的数据备份到一个目录中去,可以保留最近1个月的备份
  3. 每次copy备份的时候,都把太旧的备份给删了
  4. 每天晚上将当前机器上的备份复制一份到其他机器上,以防机器损坏

Redis主从架构

redis主从架构搭建,配置从节点步骤:

bash 复制代码
1、复制一份redis.conf文件

2、将相关配置修改为如下值:
port 6380
pidfile /var/run/redis_6380.pid # 把pid进程号写入pidfile配置的文件
logfile "6380.log"
dir /usr/local/redis‐5.0.3/data/6380 # 指定数据存放目录
# 需要注释掉bind
# bind 127.0.0.1(bind绑定的是自己机器网卡的ip,如果有多块网卡可以配多个ip,代表允许客户端通
过机器的哪些网卡ip去访问,内网一般可以不配置bind,注释掉即可)

3、配置主从复制
replicaof 192.168.0.60 6379 # 从本机6379的redis实例复制数据,Redis 5.0之前使用slaveof
replica‐read‐only yes # 配置从节点只读

4、启动从节点
redis‐server redis.conf

5、连接从节点
redis‐cli ‐p 6380

6、测试在6379实例上写数据,6380实例是否能及时同步新修改数据

7、可以自己再配置一个6381的从节点

Redis主从工作原理

如果你为master配置了一个slave,不管这个slave是否是第一次连接上Master,它都会发送一个PSYNC命令给master请求复制数据。

master收到PSYNC命令后,会在后台进行数据持久化通过bgsave生成最新的rdb快照文件,持久化期间,master会继续接收客户端的请求,它会把这些可能修改数据集的请求缓存在内存中。当持久化进行完毕以后,master会把这份rdb文件数据集发送给slave,slave会把接收到的数据进行持久化生成rdb,然后再加载到内存中。然后,master再将之前缓存在内存中的命令发送给slave。当master与slave之间的连接由于某些原因而断开时,slave能够自动重连Master,如果master收到了多个slave并发连接请求,它只会进行一次持久化,而不是一个连接一次,然后再把这一份持久化的数据发送给多个并发连接的slave。

主从复制(全量复制)流程图:

数据部分复制

当master和slave断开重连后,一般都会对整份数据进行复制。但从redis2.8版本开始,redis改用可以支持部分数据复制的命令PSYNC去master同步数据,slave与master能够在网络连接断开重连后只进行部分数据复制(断点续传)。

master会在其内存中创建一个复制数据用的缓存队列,缓存最近一段时间的数据,master和它所有的slave都维护了复制的数据下标offset和master的进程id,因此,当网络连接断开后,slave会请求master继续进行未完成的复制,从所记录的数据下标开始。如果master进程id变化了,或者从节点数据下标offset太旧,已经不在master的缓存队列里了,那么将会进行一次全量数据的复制。主从复制(部分复制,断点续传)流程图:

如果有很多从节点,为了缓解主从复制风暴(多个从节点同时复制主节点导致主节点压力过大),可以做如下架构,让部分从节点与从节点(与主节点同步)同步数据

Jedis连接代码示例:

1、引入相关依赖:

xml 复制代码
<dependency> 
    <groupId>redis.clients</groupId> 
    <artifactId>jedis</artifactId>
    <version>2.9.0</version> 
</dependency>

代码示例:

java 复制代码
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

import java.io.IOException;

public class JedisSingleTest {
    public static void main(String[] args) throws IOException {

        JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
        jedisPoolConfig.setMaxTotal(20);
        jedisPoolConfig.setMaxIdle(10);
        jedisPoolConfig.setMinIdle(5);

        // timeout,这里既是连接超时又是读写超时,从Jedis 2.8开始有区分connectionTimeout和soTimeout的构造函数
        JedisPool jedisPool = new JedisPool(jedisPoolConfig, "192.168.0.60", 6379, 3000, null);

        Jedis jedis = null;
        try {
            //从redis连接池里拿出一个连接执行命令
            jedis = jedisPool.getResource();

            System.out.println(jedis.set("single", "zxzg"));
            System.out.println(jedis.get("single"));

        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
            if (jedis != null)
                jedis.close();
        }
    }
}

Redis哨兵高可用架构

sentinel哨兵是特殊的redis服务,不提供读写服务,主要用来监控redis实例节点。

哨兵架构下client端第一次从哨兵找出redis的主节点,后续就直接访问redis的主节点,不会每次都通过sentinel代理访问redis的主节点,当redis的主节点发生变化,哨兵会第一时间感知到,并且将新的redis主节点通知给client端(这里面redis的client端一般都实现了订阅功能,订阅sentinel发布的节点变动消息)

redis哨兵架构搭建步骤:

bash 复制代码
1、复制一份sentinel.conf文件
cp sentinel.conf sentinel-26379.conf

2、将相关配置修改为如下值:
port 26379
daemonize yes
pidfile "/var/run/redis-sentinel-26379.pid"
logfile "26379.log"
dir "/usr/local/redis-5.0.3/data"
# sentinel monitor <master-redis-name> <master-redis-ip> <master-redis-port> <quorum>
# quorum是一个数字,指明当有多少个sentinel认为一个master失效时(值一般为:sentinel总数/2 + 1),master才算真正失效
sentinel monitor mymaster 192.168.0.60 6379 2   # mymaster这个名字随便取,客户端访问时会用到

3、启动sentinel哨兵实例
src/redis-sentinel sentinel-26379.conf

4、查看sentinel的info信息
src/redis-cli -p 26379
127.0.0.1:26379>info
可以看到Sentinel的info里已经识别出了redis的主从

5、可以自己再配置两个sentinel,端口26380和26381,注意上述配置文件里的对应数字都要修改

sentinel集群都启动完毕后,会将哨兵集群的元数据信息写入所有sentinel的配置文件里去(追加在文件的最下面),我们查看下如下配置文件sentinel-26379.conf,如下所示:

yaml 复制代码
sentinel known-replica mymaster 192.168.0.60 6380 #代表redis主节点的从节点信息
sentinel known-replica mymaster 192.168.0.60 6381 #代表redis主节点的从节点信息
sentinel known-sentinel mymaster 192.168.0.60 26380 52d0a5d70c1f90475b4fc03b6ce7c3c56935760f  #代表感知到的其它哨兵节点
sentinel known-sentinel mymaster 192.168.0.60 26381 e9f530d3882f8043f76ebb8e1686438ba8bd5ca6  #代表感知到的其它哨兵节点

当redis主节点如果挂了,哨兵集群会重新选举出新的redis主节点,同时会修改所有sentinel节点配置文件的集群元数据信息,比如6379的redis如果挂了,假设选举出的新主节点是6380,则sentinel文件里的集群元数据信息会变成如下所示:

yaml 复制代码
sentinel known-replica mymaster 192.168.0.60 6379 #代表主节点的从节点信息
sentinel known-replica mymaster 192.168.0.60 6381 #代表主节点的从节点信息
sentinel known-sentinel mymaster 192.168.0.60 26380 52d0a5d70c1f90475b4fc03b6ce7c3c56935760f  #代表感知到的其它哨兵节点
sentinel known-sentinel mymaster 192.168.0.60 26381 e9f530d3882f8043f76ebb8e1686438ba8bd5ca6  #代表感知到的其它哨兵节点

同时还会修改sentinel文件里之前配置的mymaster对应的6379端口,改为6380

yaml 复制代码
sentinel monitor mymaster 192.168.0.60 6380 2

当6379的redis实例再次启动时,哨兵集群根据集群元数据信息就可以将6379端口的redis节点作为从节点加入集群

哨兵的Jedis连接代码:

java 复制代码
import java.io.IOException;
import java.util.HashSet;
import java.util.Set;

public class JedisSentinelTest {
    public static void main(String[] args) throws IOException {

        JedisPoolConfig config = new JedisPoolConfig();
        config.setMaxTotal(20);
        config.setMaxIdle(10);
        config.setMinIdle(5);

        String masterName = "mymaster";
        Set<String> sentinels = new HashSet<String>();
        sentinels.add(new HostAndPort("192.168.0.60",26379).toString());
        sentinels.add(new HostAndPort("192.168.0.60",26380).toString());
        sentinels.add(new HostAndPort("192.168.0.60",26381).toString());
        //JedisSentinelPool其实本质跟JedisPool类似,都是与redis主节点建立的连接池
        //JedisSentinelPool并不是说与sentinel建立的连接池,而是通过sentinel发现redis主节点并与其建立连接
        JedisSentinelPool jedisSentinelPool = new JedisSentinelPool(masterName, sentinels, config, 3000, null);
        Jedis jedis = null;
        try {
            jedis = jedisSentinelPool.getResource();
            System.out.println(jedis.set("sentinel", "zxzg"));
            System.out.println(jedis.get("sentinel"));
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
            if (jedis != null)
                jedis.close();
        }
    }
}

springboot项目核心配置:

yaml 复制代码
server:
  port: 8080

spring:
  redis:
    database: 0
    timeout: 3000
    sentinel:    #哨兵模式
      master: mymaster #主服务器所在集群名称
     nodes: 192.168.0.60:26379,192.168.0.60:26380,192.168.0.60:26381
   lettuce:
      pool:
        max-idle: 50
        min-idle: 10
        max-active: 100
        max-wait: 1000

测试代码:

java 复制代码
@RestController
public class IndexController {

    private static final Logger logger = LoggerFactory.getLogger(IndexController.class);

    @Autowired
    private StringRedisTemplate stringRedisTemplate;

    /**
     * 测试节点挂了哨兵重新选举新的master节点,客户端是否能动态感知到
     * 新的master选举出来后,哨兵会把消息发布出去,客户端实际上是实现了一个消息监听机制,
     * 当哨兵把新master的消息发布出去,客户端会立马感知到新master的信息,从而动态切换访问的masterip
     *
     * @throws InterruptedException
     */
    @RequestMapping("/test_sentinel")
    public void testSentinel() throws InterruptedException {
        int i = 1;
        while (true){
            try {
                stringRedisTemplate.opsForValue().set("zxzg"+i, i+"");
                System.out.println("设置key:"+ "zxzg" + i);
                i++;
                Thread.sleep(1000);
            }catch (Exception e){
                logger.error("错误:", e);
            }
        }
    }
}
相关推荐
栗豆包2 小时前
w179基于Java Web的流浪宠物管理系统的设计与实现
java·开发语言·spring boot·后端·spring·宠物
伟大的python程序员2 小时前
thinkphp6+swoole使用rabbitMq队列
后端·rabbitmq·swoole
组合缺一3 小时前
无耳科技 Solon v3.0.7 发布(2025农历新年版)
java·后端·科技·solon
蔚一6 小时前
安装最小化的CentOS7后,执行yum命令报错Could not resolve host mirrorlist.centos.org; 未知的错误
java·linux·spring boot·后端·centos·intellij idea
羊小猪~~6 小时前
MYSQL学习笔记(五):单行函数(字符串、数学、日期时间、条件判断、信息、加密、进制转换函数)讲解
数据库·笔记·后端·sql·学习·mysql·考研
羊小猪~~6 小时前
MYSQL学习笔记(六):聚合函数、sql语句执行原理简要分析
java·数据库·c++·后端·sql·mysql·考研
十二同学啊7 小时前
Spring Boot WebMvcConfigurer:定制你的 Web 应用
前端·spring boot·后端
007php00713 小时前
在系统重构中的工作计划与总结
大数据·开发语言·人工智能·后端·重构·aigc·php
计算机-秋大田13 小时前
基于微信的原创音乐小程序的设计与实现(LW+源码+讲解)
java·开发语言·后端·微信·小程序·课程设计
QQ274378510914 小时前
springboot基于spark的保险平台用户行为分析与研究
spring boot·后端·spark