Matplotlib自定义坐标刻度_Python数据分析与可视化

自定义坐标刻度

虽然matplotlib默认的坐标轴定位器与格式生成器可以满足大部分需求,但是并非对每一幅图都合适。

主次要刻度

学习前最好有对matplotlib图形的对象层级较为了解,例如查看前面的文章。

matplotlibfigure对象是一个盛放图形元素的包围盒。可以将每个matplotlib对象都看成是子对象的容器,每个figure都包含axes对象,每个axes对象又包含其他表示图形内容的对象,比如xaxis/yaxis,每个属性包含构成坐标轴的线条、刻度和标签的全部属性。

每一个坐标轴都有主次要刻度,主要刻度要比次要刻度更大更显著,而次要刻度往往更小。

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
ax = plt.axes(xscale='log', yscale='log')
plt.show()

可以看到主要刻度都显示为一个较大的刻度线和标签,而次要刻度都显示为一个较小的可读性,不显示标签。

隐藏刻度与标签

最常用的刻度/标签格式化操作可能就是隐藏刻度与标签了,可以通过plt.NullLocator()plt.NullFormatter()实现。

示例如下:

python 复制代码
ax = plt.axes()
ax.plot(np.random.rand(50))
ax.yaxis.set_major_locator(plt.NullLocator())
ax.xaxis.set_major_formatter(plt.NullFormatter())
plt.show()

这里x轴的标签隐藏了但是保留了刻度线,y轴的刻度和标签都隐藏了。有的图片中都不需要刻度线,比如下面这张包含人脸的图形:

python 复制代码
fig, ax = plt.subplots(5, 5, figsize=(5, 5))
fig.subplots_adjust(hspace=0, wspace=0)
# 从scikit-learn获取一些人脸照片数据,(这个scikit-learn库在之前手写数字文章有讲)
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces().images
for i in range(5):
    for j in range(5):
        ax[i, j].xaxis.set_major_locator(plt.NullLocator())
        ax[i, j].yaxis.set_major_locator(plt.NullLocator())
        ax[i, j].imshow(faces[10 * i + j], cmap="bone")
plt.show()

花哨的刻度格式

matplotlib默认的刻度格式可以满足大部分的需求。虽然默认配置已经很不错了,但是有时候可能需要更多的功能,比如正弦曲线和余弦曲线。

默认情况下刻度为整数,如果将刻度与网格线画在π的倍数上图形会更加自然,可以通过设置一个multipleLocator来实现将刻度放在你提供的数值倍数上:

python 复制代码
fig, ax = plt.subplots()
x = np.linspace(0, 3 * np.pi, 1000)
ax.plot(x, np.sin(x), lw=3, label='Sine')
ax.plot(x, np.cos(x), lw=3, label='Cosine')
# 设置网格、图例和坐标轴上下限
ax.grid(True)
ax.legend(frameon=False)
ax.axis('equal')
ax.set_xlim(0, 3 * np.pi)
ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
plt.show()

matplotlib还支持用数学符号来做刻度,在数学表达式两侧加上美元符号$,这样就可以方便地显示数学符号和数学公式。

可以用plt.FuncFormatter来实现,用一个自定义函数设置不同刻度标签的显示:

python 复制代码
def format_func(value, tick_number):
# 找到π/2的倍数刻度
    N = int(np.round(2 * value / np.pi))
    if N == 0:
        return "0"
    elif N == 1:
        return r"$\pi/2$"
    elif N == 2:
        return r"$\pi$"
    elif N % 2 > 0:
        return r"${0}\pi/2$".format(N)
    else:
        return r"${0}\pi$".format(N // 2)
ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))

格式生成器与定位器

前面已经介绍了一些格式生成器和定位器,这里再用表格简单总结一些内置的格式生成器和定位器:


相关推荐
岁岁岁平安30 分钟前
本机 MongoDB 注册系统服务、启用security认证
数据库·python·mongodb
程序员大雄学编程1 小时前
用Python来学微积分30-微分方程初步
开发语言·python·线性代数·数学·微积分
我爱学习_zwj1 小时前
App通信:HTTP与JSON全解析
python
YangYang9YangYan1 小时前
高职新能源汽车技术专业职业发展指南
大数据·人工智能·数据分析·汽车
机器学习ing.1 小时前
U-Net保姆级教程:从原理到医学细胞分割实战(PyTorch版)!
人工智能·pytorch·python·深度学习·机器学习
yzx9910132 小时前
基于Django的智慧园区管理系统开发全解析
后端·python·django
sunsunyu032 小时前
视频转图片工具
python·音视频
软件开发技术深度爱好者2 小时前
Python类中方法种类介绍
开发语言·python
用户8356290780512 小时前
使用Python合并Word文档:实现高效自动化办公
后端·python
CoovallyAIHub2 小时前
首届AI交易大赛对决!中国模型包揽冠亚军,GPT-5亏损62%垫底
人工智能·google·数据分析