树的两种遍历

1 树的序遍历

前序遍历、中序遍历、后序遍历

1.1 遍历方式

都有点抽象,需要结合代码和画图来看

  1. 递归遍历
  2. 非递归遍历:都是用栈来解决
    1. 前序遍历
      • 用一个栈,先进右再进左
    2. 中序遍历
      • 用一个栈,先进左,左出,再进右
    3. 后序遍历
      • 用两个栈,一个栈和前序遍历反着来,出的元素进另一个栈,进完之后全打印
      • 用一个栈,先解决左边的,再解决右边的。

1.2 代码实现

java 复制代码
public class RecursiveTraversalBT {
    public static class Node {
        public int val;
        public Node left;
        public Node right;
        public Node(int val){
            this.val = val;
        }
    }

    // 递归遍历
    public static void pre1(Node head) {
        if (head == null) {
            return;
        }
        System.out.print(head.val + " ");
        pre1(head.left);
        pre1(head.right);
    }

    public static void in1(Node head) {
        if (head == null) {
            return;
        }
        in1(head.left);
        System.out.print(head.val + " ");
        in1(head.right);
    }

    public static void pos1(Node head) {
        if (head == null) {
            return;
        }
        pos1(head.left);
        pos1(head.right);
        System.out.print(head.val + " ");
    }

    // 非递归遍历(栈)
    public static void pre2(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            stack.push(head);
            while (!stack.isEmpty()) {
                head = stack.pop();
                System.out.print(head.val + " ");
                if (head.right != null) {
                    stack.push(head.right);
                }
                if (head.left != null) {
                    stack.push(head.left);
                }
            }
        }
    }

    public static void in2(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            while (!stack.isEmpty() || head != null) {
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                }else {
                    head = stack.pop();
                    System.out.print(head.val + " ");
                    head = head.right;
                }
            }
        }
    }

    public static void pos2(Node head) {
        if (head != null) {
            Stack<Node> stack1 = new Stack<>();
            Stack<Node> stack2 = new Stack<>();
            stack1.push(head);
            while (!stack1.isEmpty()){
                head = stack1.pop();
                stack2.push(head);
                if (head .left != null) {
                    stack1.push(head.left);
                }
                if (head .right != null) {
                    stack1.push(head.right);
                }
            }
            while (!stack2.isEmpty()) {
                System.out.print(stack2.pop().val + " ");
            }
        }
    }

    // 后序遍历的第三种写法(只用一个栈)
    public static void pos3(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            stack.push(head);
            Node help = null;
            while (!stack.isEmpty()) {
                help = stack.peek();
                if (help.left !=null && head != help.left && head != help.right){
                    stack.push(help.left);
                } else if (help.right != null && head != help.right) {
                    stack.push(help.right);
                }else {
                    System.out.print(stack.pop().val + " ");
                    head = help;
                }
            }
        }

    }
    
    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);

        pos2(head);
        System.out.println();
        pos3(head);
        System.out.println();

    }
}

2 树的层遍历

2.1 遍历方式

树的最宽层有几个节点?

  1. 借助Map来查找
    1. 定义一个队列和一个HashMap,都把头节点放进去,其中Map中存放的是当前节点和其对应的层数
    2. 每次弹出一个节点,就把这个节点的左右子节点都放进队列和对应的Map
    3. 如果还没到下一层,那么当前层的节点数就要加一
    4. 如果到了下一层,就把上一层的节点数和之前层的节点数比较
    5. 返回节点数最多的层的节点数
  2. 只用队列
    1. 定义一个当前层的最左节点,一个下一层的最左节点
    2. 当弹出的节点等于当前层最左节点时,记录当前层节点数并与之前层的最大节点数比较,哪个大留哪个
    3. 这个时候就要进入下一次,所以当前层节点数置为0,当前层最左节点置为下一层最左节点

4.2.2 代码实现

java 复制代码
public class TreeMaxWidth {
    public static class Node {
        public int val;
        public Node left;
        public Node right;
        public Node(int val) {
            this.val = val;
            left = null;
            right = null;
        }
    }

    public static int maxWidthUseMap(Node head) {
        if (head == null) {
            return 0;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.add(head);
        HashMap<Node, Integer> hashMap = new HashMap<>();
        hashMap.put(head, 1);
        int curLevelNodes = 0;
        int curLevel = 1;
        int max = 0;
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            int curNodeLevel = hashMap.get(cur);
            if (cur.left != null) {
                queue.add(cur.left);
                hashMap.put(cur.left, curNodeLevel + 1);
            }
            if (cur.right != null) {
                queue.add(cur.right);
                hashMap.put(cur.right, curNodeLevel + 1);
            }
            if (curLevel == curNodeLevel) {
                curLevelNodes++;
            }else {
                max = Math.max(max, curLevelNodes);
                curLevel++;
                curLevelNodes = 1;
            }
        }
        max = Math.max(max, curLevelNodes);
        return max;
    }

    public static int maxWidthNoMap (Node head) {
        if (head == null) {
            return 0;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.add(head);
        Node curEnd = head;
        Node nextEnd = null;
        int max = 0;
        int curLevelNodes = 0;
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            if (cur.left != null) {
                queue.add(cur.left);
                nextEnd = cur.left;
            }
            if (cur.right != null) {
                queue.add(cur.right);
                nextEnd = cur.right;
            }
            curLevelNodes++;
            if (cur == curEnd) {
                max = Math.max(max, curLevelNodes);
                curLevelNodes = 0;
                curEnd = nextEnd;
            }
        }
        return max;
    }

    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);
        head.left.right.left = new Node(8);
        head.right.left.right = new Node(9);
        
        System.out.println(maxWidthNoMap(head));
    }
}
相关推荐
豆浆Whisky2 分钟前
Go泛型实战指南:从入门到工程最佳实践|Go语言进阶(12)
后端·go
元亓亓亓23 分钟前
SSM--day4--SpringMVC(补充)
java·后端·ssm
沐雨橙风ιε1 小时前
Spring Boot整合Apache Shiro权限认证框架(应用篇)
java·spring boot·后端·apache shiro
考虑考虑1 小时前
fastjson调用is方法开头注意
java·后端·java ee
小蒜学长1 小时前
springboot基于javaweb的小零食销售系统的设计与实现(代码+数据库+LW)
java·开发语言·数据库·spring boot·后端
brzhang2 小时前
为什么 OpenAI 不让 LLM 生成 UI?深度解析 OpenAI Apps SDK 背后的新一代交互范式
前端·后端·架构
EnCi Zheng2 小时前
JPA 连接 PostgreSQL 数据库完全指南
java·数据库·spring boot·后端·postgresql
brzhang2 小时前
OpenAI Apps SDK ,一个好的 App,不是让用户知道它该怎么用,而是让用户自然地知道自己在做什么。
前端·后端·架构
LucianaiB2 小时前
从玩具到工业:基于 CodeBuddy code CLI 构建电力变压器绕组短路智能诊断系统
后端
武子康4 小时前
大数据-118 - Flink 批处理 DataSet API 全面解析:应用场景、代码示例与优化机制
大数据·后端·flink