树的两种遍历

1 树的序遍历

前序遍历、中序遍历、后序遍历

1.1 遍历方式

都有点抽象,需要结合代码和画图来看

  1. 递归遍历
  2. 非递归遍历:都是用栈来解决
    1. 前序遍历
      • 用一个栈,先进右再进左
    2. 中序遍历
      • 用一个栈,先进左,左出,再进右
    3. 后序遍历
      • 用两个栈,一个栈和前序遍历反着来,出的元素进另一个栈,进完之后全打印
      • 用一个栈,先解决左边的,再解决右边的。

1.2 代码实现

java 复制代码
public class RecursiveTraversalBT {
    public static class Node {
        public int val;
        public Node left;
        public Node right;
        public Node(int val){
            this.val = val;
        }
    }

    // 递归遍历
    public static void pre1(Node head) {
        if (head == null) {
            return;
        }
        System.out.print(head.val + " ");
        pre1(head.left);
        pre1(head.right);
    }

    public static void in1(Node head) {
        if (head == null) {
            return;
        }
        in1(head.left);
        System.out.print(head.val + " ");
        in1(head.right);
    }

    public static void pos1(Node head) {
        if (head == null) {
            return;
        }
        pos1(head.left);
        pos1(head.right);
        System.out.print(head.val + " ");
    }

    // 非递归遍历(栈)
    public static void pre2(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            stack.push(head);
            while (!stack.isEmpty()) {
                head = stack.pop();
                System.out.print(head.val + " ");
                if (head.right != null) {
                    stack.push(head.right);
                }
                if (head.left != null) {
                    stack.push(head.left);
                }
            }
        }
    }

    public static void in2(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            while (!stack.isEmpty() || head != null) {
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                }else {
                    head = stack.pop();
                    System.out.print(head.val + " ");
                    head = head.right;
                }
            }
        }
    }

    public static void pos2(Node head) {
        if (head != null) {
            Stack<Node> stack1 = new Stack<>();
            Stack<Node> stack2 = new Stack<>();
            stack1.push(head);
            while (!stack1.isEmpty()){
                head = stack1.pop();
                stack2.push(head);
                if (head .left != null) {
                    stack1.push(head.left);
                }
                if (head .right != null) {
                    stack1.push(head.right);
                }
            }
            while (!stack2.isEmpty()) {
                System.out.print(stack2.pop().val + " ");
            }
        }
    }

    // 后序遍历的第三种写法(只用一个栈)
    public static void pos3(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            stack.push(head);
            Node help = null;
            while (!stack.isEmpty()) {
                help = stack.peek();
                if (help.left !=null && head != help.left && head != help.right){
                    stack.push(help.left);
                } else if (help.right != null && head != help.right) {
                    stack.push(help.right);
                }else {
                    System.out.print(stack.pop().val + " ");
                    head = help;
                }
            }
        }

    }
    
    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);

        pos2(head);
        System.out.println();
        pos3(head);
        System.out.println();

    }
}

2 树的层遍历

2.1 遍历方式

树的最宽层有几个节点?

  1. 借助Map来查找
    1. 定义一个队列和一个HashMap,都把头节点放进去,其中Map中存放的是当前节点和其对应的层数
    2. 每次弹出一个节点,就把这个节点的左右子节点都放进队列和对应的Map
    3. 如果还没到下一层,那么当前层的节点数就要加一
    4. 如果到了下一层,就把上一层的节点数和之前层的节点数比较
    5. 返回节点数最多的层的节点数
  2. 只用队列
    1. 定义一个当前层的最左节点,一个下一层的最左节点
    2. 当弹出的节点等于当前层最左节点时,记录当前层节点数并与之前层的最大节点数比较,哪个大留哪个
    3. 这个时候就要进入下一次,所以当前层节点数置为0,当前层最左节点置为下一层最左节点

4.2.2 代码实现

java 复制代码
public class TreeMaxWidth {
    public static class Node {
        public int val;
        public Node left;
        public Node right;
        public Node(int val) {
            this.val = val;
            left = null;
            right = null;
        }
    }

    public static int maxWidthUseMap(Node head) {
        if (head == null) {
            return 0;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.add(head);
        HashMap<Node, Integer> hashMap = new HashMap<>();
        hashMap.put(head, 1);
        int curLevelNodes = 0;
        int curLevel = 1;
        int max = 0;
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            int curNodeLevel = hashMap.get(cur);
            if (cur.left != null) {
                queue.add(cur.left);
                hashMap.put(cur.left, curNodeLevel + 1);
            }
            if (cur.right != null) {
                queue.add(cur.right);
                hashMap.put(cur.right, curNodeLevel + 1);
            }
            if (curLevel == curNodeLevel) {
                curLevelNodes++;
            }else {
                max = Math.max(max, curLevelNodes);
                curLevel++;
                curLevelNodes = 1;
            }
        }
        max = Math.max(max, curLevelNodes);
        return max;
    }

    public static int maxWidthNoMap (Node head) {
        if (head == null) {
            return 0;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.add(head);
        Node curEnd = head;
        Node nextEnd = null;
        int max = 0;
        int curLevelNodes = 0;
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            if (cur.left != null) {
                queue.add(cur.left);
                nextEnd = cur.left;
            }
            if (cur.right != null) {
                queue.add(cur.right);
                nextEnd = cur.right;
            }
            curLevelNodes++;
            if (cur == curEnd) {
                max = Math.max(max, curLevelNodes);
                curLevelNodes = 0;
                curEnd = nextEnd;
            }
        }
        return max;
    }

    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);
        head.left.right.left = new Node(8);
        head.right.left.right = new Node(9);
        
        System.out.println(maxWidthNoMap(head));
    }
}
相关推荐
闲猫1 小时前
go orm GORM
开发语言·后端·golang
丁卯4041 小时前
Go语言中使用viper绑定结构体和yaml文件信息时,标签的使用
服务器·后端·golang
bing_1585 小时前
简单工厂模式 (Simple Factory Pattern) 在Spring Boot 中的应用
spring boot·后端·简单工厂模式
天上掉下来个程小白5 小时前
案例-14.文件上传-简介
数据库·spring boot·后端·mybatis·状态模式
Asthenia04126 小时前
基于Jackson注解的JSON工具封装与Redis集成实战
后端
编程星空6 小时前
css主题色修改后会多出一个css吗?css怎么定义变量?
开发语言·后端·rust
程序员侠客行7 小时前
Spring事务原理 二
java·后端·spring
dmy7 小时前
docker 快速构建开发环境
后端·docker·容器
sjsjsbbsbsn8 小时前
Spring Boot定时任务原理
java·spring boot·后端
计算机毕设指导68 小时前
基于Springboot学生宿舍水电信息管理系统【附源码】
java·spring boot·后端·mysql·spring·tomcat·maven