树的两种遍历

1 树的序遍历

前序遍历、中序遍历、后序遍历

1.1 遍历方式

都有点抽象,需要结合代码和画图来看

  1. 递归遍历
  2. 非递归遍历:都是用栈来解决
    1. 前序遍历
      • 用一个栈,先进右再进左
    2. 中序遍历
      • 用一个栈,先进左,左出,再进右
    3. 后序遍历
      • 用两个栈,一个栈和前序遍历反着来,出的元素进另一个栈,进完之后全打印
      • 用一个栈,先解决左边的,再解决右边的。

1.2 代码实现

java 复制代码
public class RecursiveTraversalBT {
    public static class Node {
        public int val;
        public Node left;
        public Node right;
        public Node(int val){
            this.val = val;
        }
    }

    // 递归遍历
    public static void pre1(Node head) {
        if (head == null) {
            return;
        }
        System.out.print(head.val + " ");
        pre1(head.left);
        pre1(head.right);
    }

    public static void in1(Node head) {
        if (head == null) {
            return;
        }
        in1(head.left);
        System.out.print(head.val + " ");
        in1(head.right);
    }

    public static void pos1(Node head) {
        if (head == null) {
            return;
        }
        pos1(head.left);
        pos1(head.right);
        System.out.print(head.val + " ");
    }

    // 非递归遍历(栈)
    public static void pre2(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            stack.push(head);
            while (!stack.isEmpty()) {
                head = stack.pop();
                System.out.print(head.val + " ");
                if (head.right != null) {
                    stack.push(head.right);
                }
                if (head.left != null) {
                    stack.push(head.left);
                }
            }
        }
    }

    public static void in2(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            while (!stack.isEmpty() || head != null) {
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                }else {
                    head = stack.pop();
                    System.out.print(head.val + " ");
                    head = head.right;
                }
            }
        }
    }

    public static void pos2(Node head) {
        if (head != null) {
            Stack<Node> stack1 = new Stack<>();
            Stack<Node> stack2 = new Stack<>();
            stack1.push(head);
            while (!stack1.isEmpty()){
                head = stack1.pop();
                stack2.push(head);
                if (head .left != null) {
                    stack1.push(head.left);
                }
                if (head .right != null) {
                    stack1.push(head.right);
                }
            }
            while (!stack2.isEmpty()) {
                System.out.print(stack2.pop().val + " ");
            }
        }
    }

    // 后序遍历的第三种写法(只用一个栈)
    public static void pos3(Node head) {
        if (head != null) {
            Stack<Node> stack = new Stack<>();
            stack.push(head);
            Node help = null;
            while (!stack.isEmpty()) {
                help = stack.peek();
                if (help.left !=null && head != help.left && head != help.right){
                    stack.push(help.left);
                } else if (help.right != null && head != help.right) {
                    stack.push(help.right);
                }else {
                    System.out.print(stack.pop().val + " ");
                    head = help;
                }
            }
        }

    }
    
    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);

        pos2(head);
        System.out.println();
        pos3(head);
        System.out.println();

    }
}

2 树的层遍历

2.1 遍历方式

树的最宽层有几个节点?

  1. 借助Map来查找
    1. 定义一个队列和一个HashMap,都把头节点放进去,其中Map中存放的是当前节点和其对应的层数
    2. 每次弹出一个节点,就把这个节点的左右子节点都放进队列和对应的Map
    3. 如果还没到下一层,那么当前层的节点数就要加一
    4. 如果到了下一层,就把上一层的节点数和之前层的节点数比较
    5. 返回节点数最多的层的节点数
  2. 只用队列
    1. 定义一个当前层的最左节点,一个下一层的最左节点
    2. 当弹出的节点等于当前层最左节点时,记录当前层节点数并与之前层的最大节点数比较,哪个大留哪个
    3. 这个时候就要进入下一次,所以当前层节点数置为0,当前层最左节点置为下一层最左节点

4.2.2 代码实现

java 复制代码
public class TreeMaxWidth {
    public static class Node {
        public int val;
        public Node left;
        public Node right;
        public Node(int val) {
            this.val = val;
            left = null;
            right = null;
        }
    }

    public static int maxWidthUseMap(Node head) {
        if (head == null) {
            return 0;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.add(head);
        HashMap<Node, Integer> hashMap = new HashMap<>();
        hashMap.put(head, 1);
        int curLevelNodes = 0;
        int curLevel = 1;
        int max = 0;
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            int curNodeLevel = hashMap.get(cur);
            if (cur.left != null) {
                queue.add(cur.left);
                hashMap.put(cur.left, curNodeLevel + 1);
            }
            if (cur.right != null) {
                queue.add(cur.right);
                hashMap.put(cur.right, curNodeLevel + 1);
            }
            if (curLevel == curNodeLevel) {
                curLevelNodes++;
            }else {
                max = Math.max(max, curLevelNodes);
                curLevel++;
                curLevelNodes = 1;
            }
        }
        max = Math.max(max, curLevelNodes);
        return max;
    }

    public static int maxWidthNoMap (Node head) {
        if (head == null) {
            return 0;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.add(head);
        Node curEnd = head;
        Node nextEnd = null;
        int max = 0;
        int curLevelNodes = 0;
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            if (cur.left != null) {
                queue.add(cur.left);
                nextEnd = cur.left;
            }
            if (cur.right != null) {
                queue.add(cur.right);
                nextEnd = cur.right;
            }
            curLevelNodes++;
            if (cur == curEnd) {
                max = Math.max(max, curLevelNodes);
                curLevelNodes = 0;
                curEnd = nextEnd;
            }
        }
        return max;
    }

    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);
        head.left.right.left = new Node(8);
        head.right.left.right = new Node(9);
        
        System.out.println(maxWidthNoMap(head));
    }
}
相关推荐
这里有鱼汤6 分钟前
80%新手炒股都在误用技术指标?一文揭秘正确分类与实战组合
后端·python
挖坑的张师傅12 分钟前
基于 Rust 的高性能 S3 over NFS 系统设计
后端·架构
澡点睡觉28 分钟前
【golang长途旅行第32站】反射
开发语言·后端·golang
用户61204149221329 分钟前
C语言做的排队叫号系统
c语言·后端·敏捷开发
IT_陈寒1 小时前
3年Java开发经验总结:提升50%编码效率的7个核心技巧与实战案例
前端·人工智能·后端
Victor3562 小时前
Redis(26)Redis的AOF持久化的优点和缺点是什么?
后端
Victor3562 小时前
Redis(27)如何对Redis进行备份和恢复?
后端
你的人类朋友9 小时前
【操作系统】Unix和Linux是什么关系?
后端·操作系统·unix
uzong10 小时前
半小时打造七夕传统文化网站:Qoder AI编程实战记录
后端·ai编程
快乐就是哈哈哈10 小时前
从传统遍历到函数式编程:彻底掌握 Java Stream 流
后端