java - 归并排序

一、什么是归并排序

归并排序是一种常见的排序算法,也是一种分治策略的典型应用。该算法的基本思想是将待排序的序列分成若干个子序列,然后递归地对这些子序列进行排序,最终将排好序的子序列合并成一个有序序列。

具体来说,归并排序的过程可以分为两个阶段。

第一个阶段是分解,即将原序列分成若干个长度相等的子序列,每个子序列再分成若干个长度相等的子序列,直到无法分解为止。

第二个阶段是合并,即将已排好序的子序列合并成一个有序序列。

二、代码实现

递归:

java 复制代码
 public static void mergeSort(int[] nums,int left,int right){
        if(left >= right){
            return ;
        }
        int mid = (left+right)/2;
        mergeSort(nums,left,mid);
        mergeSort(nums,mid+1,right);
        merge(nums,left,mid,right);
    }
    public static void merge(int[] nums,int left,int mid,int right){
        // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
        // 创建一个临时数组 tmp ,用于存放合并后的结果
        int[] tmp = new int[right-left+1];
        int k = 0;
        int s1 = left;
        int s2 = mid+1;
        // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
        while(s1 <= mid && s2 <= right){
            if(nums[s1] <= nums[s2]){
                tmp[k++] = nums[s1++];
            }else{
                tmp[k++] = nums[s2++];
            }
        }
        // 将左子数组和右子数组的剩余元素复制到临时数组中
        while (s1 <= mid){
            tmp[k++] = nums[s1++];
        }
        while (s2 <= right){
            tmp[k++] = nums[s2++];
        }
         // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
        for (int i = 0; i < tmp.length; i++) {
            nums[i+left] = tmp[i];
        }
    }

非递归:

java 复制代码
public  static void mergeSort(int[] nums){
        //模拟递归的效果
        int gap = 1;
        while(gap < nums.length){
            for (int i = 0; i < nums.length; i += gap * 2) {
                int left = i;
                int mid = left + gap -1;
                if(mid >= nums.length){
                    mid  = nums.length -1;
                }
                int right = mid + gap;
                if(right >= nums.length){
                    right  = nums.length -1;
                }
                merge(nums,left,mid,right);
            }
            gap *= 2;
        }
    }
 public static void merge(int[] nums,int left,int mid,int right){
        int[] tmp = new int[right-left+1];
        int k = 0;
        int s1 = left;
        int s2 = mid+1;
        while(s1 <= mid && s2 <= right){
            if(nums[s1] <= nums[s2]){
                tmp[k++] = nums[s1++];
            }else{
                tmp[k++] = nums[s2++];
            }
        }
        while (s1 <= mid){
            tmp[k++] = nums[s1++];
        }
        while (s2 <= right){
            tmp[k++] = nums[s2++];
        }
        for (int i = 0; i < tmp.length; i++) {
            nums[i+left] = tmp[i];
        }
    }

三、算法特性

时间复杂度: O(n ^ log n),划分产生高度为 log ⁡n 的递归树,每层合并的总操作数量为 n ,因此总体时间复杂度为 O(n ^ log⁡ n) 。

空间复杂度:O(n),递归深度为 log⁡ n ,使用 O(log⁡ n) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 O(n) 大小的额外空间。

稳定排序:在合并过程中,相等元素的次序保持不变。

相关推荐
懒惰才能让科技进步34 分钟前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara1 小时前
函数对象笔记
c++·算法
泉崎1 小时前
11.7比赛总结
数据结构·算法
你好helloworld1 小时前
滑动窗口最大值
数据结构·算法·leetcode
AI街潜水的八角2 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
白榆maple2 小时前
(蓝桥杯C/C++)——基础算法(下)
算法
JSU_曾是此间年少2 小时前
数据结构——线性表与链表
数据结构·c++·算法
sjsjs112 小时前
【数据结构-合法括号字符串】【hard】【拼多多面试题】力扣32. 最长有效括号
数据结构·leetcode
此生只爱蛋3 小时前
【手撕排序2】快速排序
c语言·c++·算法·排序算法
blammmp3 小时前
Java:数据结构-枚举
java·开发语言·数据结构