Two Rabbits,区间dp,最长回文串

Problem - 4745 (hdu.edu.cn)

Problem Description

Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.

The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.

At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.

For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn't jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.

Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.

Now they want to find out the maximum turns they can play if they follow the optimal strategy.

Input

The input contains at most 20 test cases.

For each test cases, the first line contains a integer n denoting the number of stones.

The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)

The input ends with n = 0.

Output

For each test case, print a integer denoting the maximum turns.

Sample Input

复制代码

1

1

4

1 1 2 1

6

2 1 1 2 1 3 0

Sample Output

复制代码

1

4

5

Hint

For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.

For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.

解析 :

性质:想要满足题目的意思,两只兔子只能在所给序列的最长回文子串上行走

子集划分:f[i][j]:表示区间 i 到 j 内的最长回文子串的长度是多少

状态转移 :

当 a[i]==a[j]: f[i][j]=f[i+1][j-1]+2;

否则:f[i][j]=max(f[i][j-1],f[i+1][j]);

由于题目中的序列是一个环,所以最后需要特殊处理,详细看代码

cpp 复制代码
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>

using namespace std;
typedef long long LL;
const int N = 1e3 + 5;
int n,a[N];
int f[N][N];


int main() {
	while (cin >> n,n) {
		memset(f, 0, sizeof f);
		for (int i = 1; i <= n; i++) {
			scanf("%d", &a[i]);
		}
		for (int i = 1; i <= n; i++) {
			f[i][i] = 1;
		}
		for (int len = 2; len <= n; len++) {
			for (int i = 1; i + len - 1 <= n; i++) {
				int j = i + len - 1;
				if (a[i] == a[j]) {
					f[i][j] = f[i + 1][j - 1] + 2;
				}
				else {
					f[i][j] = max(f[i + 1][j], f[i][j - 1]);
				}
			}
		}
		int ans = 0;
		for (int i = 1; i <= n; i++) {
			ans = max(ans, f[1][i]+ f[i + 1][n]);
		}
		cout << ans << endl;
	}
	return 0;
}
相关推荐
狂炫冰美式2 分钟前
当硅基神明撞上人类的“叹息之墙”:距离证明哥德巴赫猜想,AI还有多远?
前端·算法·架构
一起养小猫20 分钟前
《Java数据结构与算法》第四篇(四):二叉树的高级操作查找与删除实现详解
java·开发语言·数据结构·算法
前端小白在前进42 分钟前
力扣刷题:千位分割数
javascript·算法·leetcode
free-elcmacom44 分钟前
机器学习高阶教程<11>当数据开始“折叠”:流形学习与深度神经网络如何发现世界的隐藏维度
人工智能·python·神经网络·学习·算法·机器学习·dnn
小年糕是糕手1 小时前
【C/C++刷题集】string类(一)
开发语言·数据结构·c++·算法·leetcode
努力学算法的蒟蒻1 小时前
day40(12.21)——leetcode面试经典150
算法·leetcode·面试
ToddyBear1 小时前
从字符游戏到 CPU 指令集:一道算法题背后的深度思维跃迁
数据结构·算法
光影少年1 小时前
前端算法新手如何刷算法?
前端·算法
Andyshengwx1 小时前
图论 最小生成树 MST问题
c++·算法·图论
賬號封禁中miu1 小时前
图论之最小生成树
java·数据结构·算法·图论