使用opencv实现图片相似度检测

1.为什么学这个,我对图像处理非常感兴趣,我联想到海尔的指纹识别门锁是如何进行检测的,我在想不应该呀,单片机性能这么差,应该是使用了训练后的数据去检测图片的,如果我要实现草莓检测,知道它是不是草莓,我觉得单纯使用图片处理是不够的,我考虑过使用指纹模块来接触草莓从而实现判断他是不是草莓,从而联想到学习图像相似度检测,我们人类的手指事实上是有大量的传感器的,机器如果想要实现那科技含量太高了,而且成本高,就算实现了也只能放在家里自己玩...

2.代码基于python3.1 opencv,先使用直方图判断是否是简单的图形(运算快)如果不是在判断是否是复杂的图形(运算慢)

python 复制代码
import cv2
def calculate_complexity_similarity(img1str, img2str):
    # 加载两张图片
    img1 = cv2.imread(img1str)
    img2 = cv2.imread(img2str)

    # 将图片转换为灰度图像
    gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    # 创建ORB特征检测器
    orb = cv2.ORB_create()

    # 检测特征点和描述符
    kp1, des1 = orb.detectAndCompute(gray_img1, None)
    kp2, des2 = orb.detectAndCompute(gray_img2, None)

    # 创建暴力匹配器
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

    # 进行特征匹配
    matches = bf.match(des1, des2)
    similarity=0.0
    # 根据特征点匹配结果计算相似度
    if len(matches) > 0:
        similarity = sum([match.distance for match in matches]) / len(matches)
        print('图片相似度为:', similarity)
    else:
        print('未找到匹配的特征点')
        # 调用函数进行图片相似度计算,计算简单的图片相似度
    return similarity
def calculate_histogram_similarity(img1_path, img2_path):
    # 读取两张图片
    img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE)
    img2 = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE)

    # 计算直方图
    hist1 = cv2.calcHist([img1], [0], None, [256], [0, 256])
    hist2 = cv2.calcHist([img2], [0], None, [256], [0, 256])

    # 归一化直方图
    cv2.normalize(hist1, hist1, 0, 1, cv2.NORM_MINMAX)
    cv2.normalize(hist2, hist2, 0, 1, cv2.NORM_MINMAX)

    # 比较直方图
    similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
    if similarity<0.6:
        similarity=calculate_complexity_similarity(img1str, img2str)

    return similarity


if __name__ == '__main__':
    img1str='straw1.png'
    img2str='straw3.png'

    sim = calculate_histogram_similarity(img1str, img2str)
    print('图片相似度为:', sim)

3.测试效果

//简单的图片使用直方图归一化处理

//不同的图片之间比较

//2和22比较

//2和23无法检测出来,可能是2个2颜色不一样,2和24也一样

//straw1和straw2 这两张是在一张图片的两颗草莓

图片相似度为: 0.8582924959300794

//straw1和straw3,不同图片的草莓

图片相似度为: 69.67826086956522

//与倒立的草莓

图片相似度为: 68.84821428571429

图片相似度为: 73.10416666666667

//带有草莓花的草莓,比较符合实际情况

图片相似度为: 0.7757366241694935

//啊这汽车和草莓是相似的?而且是多个草莓,改了下代码 如果形状都不同了,similarity<0直接返回

3.改进后的代码

python 复制代码
import cv2
def calculate_complexity_similarity(img1str, img2str):
    # 加载两张图片
    img1 = cv2.imread(img1str)
    img2 = cv2.imread(img2str)

    # 将图片转换为灰度图像
    gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    # 创建ORB特征检测器
    orb = cv2.ORB_create()

    # 检测特征点和描述符
    kp1, des1 = orb.detectAndCompute(gray_img1, None)
    kp2, des2 = orb.detectAndCompute(gray_img2, None)

    # 创建暴力匹配器
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

    # 进行特征匹配
    matches = bf.match(des1, des2)
    similarity=0.0
    # 根据特征点匹配结果计算相似度
    if len(matches) > 0:
        similarity = sum([match.distance for match in matches]) / len(matches)
        print('图片相似度为:', similarity)
    else:
        print('未找到匹配的特征点')
        # 调用函数进行图片相似度计算,计算简单的图片相似度
    return similarity
def calculate_histogram_similarity(img1_path, img2_path):
    # 读取两张图片
    img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE)
    img2 = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE)

    # 计算直方图
    hist1 = cv2.calcHist([img1], [0], None, [256], [0, 256])
    hist2 = cv2.calcHist([img2], [0], None, [256], [0, 256])

    # 归一化直方图
    cv2.normalize(hist1, hist1, 0, 1, cv2.NORM_MINMAX)
    cv2.normalize(hist2, hist2, 0, 1, cv2.NORM_MINMAX)

    # 比较直方图
    similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
    print(similarity)
     #30%的几率是那应该不是一个东西
    if similarity <0.3:
         return similarity
    if similarity<0.6:
        similarity=calculate_complexity_similarity(img1str, img2str)

    return similarity


if __name__ == '__main__':
    img1str='straw4.png'
    img2str='straw7.png'

    sim = calculate_histogram_similarity(img1str, img2str)
    print('图片相似度为:', sim)

//改进后的结果

//不同的形状的都返回负数

图片相似度为: -0.07563206074940822

4.以后改进的地方,上面的代码可以简单的检测颜色相同形状相同的问题,但是也面临着检测精度的不精确,我们可以录入多个图片如果取相似度最高的一张,当然性能不大好, 识别苹果和草莓达到40%相似率

相关推荐
CES_Asia9 分钟前
国资助力科技创新,闪耀CES Asia 2025
人工智能·科技·智能手机·智能音箱·智能电视
eric-sjq31 分钟前
基于xiaothink对Wanyv-50M模型进行c-eval评估
人工智能·python·语言模型·自然语言处理·github
是十一月末41 分钟前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
工业互联网专业1 小时前
基于OpenCV和Python的人脸识别系统_django
人工智能·python·opencv·django·毕业设计·源码·课程设计
ai产品老杨1 小时前
报警推送消息升级的名厨亮灶开源了。
vue.js·人工智能·安全·开源·音视频
智源研究院官方账号1 小时前
智源研究院与安谋科技达成战略合作,共建开源AI“芯”生态
人工智能·开源
积兆科技1 小时前
从汽车企业案例看仓网规划的关键步骤(视频版)
人工智能·算法·汽车·制造
Robot2511 小时前
「地平线」副总裁余轶南与「理想汽车」智驾产品总监赵哲伦联手创业,入局具身智能赛道!
大数据·人工智能·机器人·汽车
智能汽车人1 小时前
行业分析---造车新势力之零跑汽车
人工智能·自动驾驶·汽车
山顶夕景2 小时前
【ML】机器学习中常见的25个数学公式
人工智能·数学·机器学习