2 时间序列预测入门:GRU

0 论文地址

GRU 原论文:https://arxiv.org/pdf/1406.1078v3.pdf

GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期记忆和反向传播中的梯度等问题,与LSTM的作用类似,不过比LSTM简单,容易进行训练。

重置门决定了如何将新的输入信息与前面的记忆相结合。

更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,也就是更新门帮助模型决定到底要将多少过去的信息传递到未来,简单来说就是用于更新记忆。

y = GRU(x,ho) 两个输入: x, h0;

需要数据的同学,也可私聊:

1 数据

数据: 2023"SEED"第四届江苏大数据开发与应用大赛--新能源赛道的数据

MARS开发者生态社区

解题思路: 总共500个充电站状, 关联地理位置,然后提取18个特征;把这18个特征作为时步不长(记得是某个比赛的思路)然后特征长度为1 (类比词向量的size)

data = (batch_size, time_stamp, 1 )

其中: time_stamp对应了特征;也可以把历史特征作为训练数据的一部分,但是如何很长的序列预测如何处理值得考虑下;

1.1 单向的GRU

复制代码
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
#import tushare as ts
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from torch.utils.data import TensorDataset
from tqdm import tqdm
from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt
import tqdm
import sys
import os
import gc
import argparse
import warnings
 
warnings.filterwarnings('ignore')


# 读取数据
train_power_forecast_history = pd.read_csv('../data/data1/train/power_forecast_history.csv')
train_power = pd.read_csv('../data/data1/train/power.csv')
train_stub_info = pd.read_csv('../data/data1/train/stub_info.csv')
 
test_power_forecast_history = pd.read_csv('../data/data1/test/power_forecast_history.csv')
test_stub_info = pd.read_csv('../data/data1/test/stub_info.csv')
 
# 聚合数据
train_df = train_power_forecast_history.groupby(['id_encode','ds']).head(1)
del train_df['hour']
 
test_df = test_power_forecast_history.groupby(['id_encode','ds']).head(1)
del test_df['hour']
 
tmp_df = train_power.groupby(['id_encode','ds'])['power'].sum()
tmp_df.columns = ['id_encode','ds','power']
 
# 合并充电量数据
train_df = train_df.merge(tmp_df, on=['id_encode','ds'], how='left')
 
### 合并数据
train_df = train_df.merge(train_stub_info, on='id_encode', how='left')
test_df = test_df.merge(test_stub_info, on='id_encode', how='left')

h3_code = pd.read_csv("../data/h3_lon_lat.csv")
train_df = train_df.merge(h3_code,on='h3')
test_df = test_df.merge(h3_code,on='h3')

def kalman_filter(data, q=0.0001, r=0.01):
    # 后验初始值
    x0 = data[0]                              # 令第一个估计值,为当前值
    p0 = 1.0
    # 存结果的列表
    x = [x0]
    for z in data[1:]:                        # kalman 滤波实时计算,只要知道当前值z就能计算出估计值(后验值)x0
        # 先验值
        x1_minus = x0                         # X(k|k-1) = AX(k-1|k-1) + BU(k) + W(k), A=1,BU(k) = 0
        p1_minus = p0 + q                     # P(k|k-1) = AP(k-1|k-1)A' + Q(k), A=1
        # 更新K和后验值
        k1 = p1_minus / (p1_minus + r)        # Kg(k)=P(k|k-1)H'/[HP(k|k-1)H' + R], H=1
        x0 = x1_minus + k1 * (z - x1_minus)   # X(k|k) = X(k|k-1) + Kg(k)[Z(k) - HX(k|k-1)], H=1
        p0 = (1 - k1) * p1_minus              # P(k|k) = (1 - Kg(k)H)P(k|k-1), H=1
        x.append(x0)                          # 由输入的当前值z 得到估计值x0存入列表中,并开始循环到下一个值
    return x


#kalman_filter()
train_df['new_label'] = 0
for i in range(500):
    #print(i)
    label = i
    #train_df[train_df['id_encode']==labe]['power'].values
    train_df.loc[train_df['id_encode']==label, 'new_label'] = kalman_filter(data=train_df[train_df['id_encode']==label]['power'].values)

### 数据预处理
train_df['flag'] = train_df['flag'].map({'A':0,'B':1})
test_df['flag'] = test_df['flag'].map({'A':0,'B':1})
 
def get_time_feature(df, col):
 
    df_copy = df.copy()
    prefix = col + "_"
    df_copy['new_'+col] = df_copy[col].astype(str)
 
    col = 'new_'+col
    df_copy[col] = pd.to_datetime(df_copy[col], format='%Y%m%d')
    #df_copy[prefix + 'year'] = df_copy[col].dt.year
    df_copy[prefix + 'month'] = df_copy[col].dt.month
    df_copy[prefix + 'day'] = df_copy[col].dt.day
    # df_copy[prefix + 'weekofyear'] = df_copy[col].dt.weekofyear
    df_copy[prefix + 'dayofweek'] = df_copy[col].dt.dayofweek
    # df_copy[prefix + 'is_wknd'] = df_copy[col].dt.dayofweek // 6
    df_copy[prefix + 'quarter'] = df_copy[col].dt.quarter
    # df_copy[prefix + 'is_month_start'] = df_copy[col].dt.is_month_start.astype(int)
    # df_copy[prefix + 'is_month_end'] = df_copy[col].dt.is_month_end.astype(int)
    del df_copy[col]
 
    return df_copy
 
train_df = get_time_feature(train_df, 'ds')
test_df = get_time_feature(test_df, 'ds')

train_df = train_df.fillna(999)
test_df = test_df.fillna(999)

cols = [f for f in train_df.columns if f not in ['ds','power','h3','new_label']]


scaler = MinMaxScaler(feature_range=(0,1))
scalar_falg = False
if scalar_falg == True:
    df_for_training_scaled = scaler.fit_transform(train_df[cols])
    df_for_testing_scaled= scaler.transform(test_df[cols])
else:
    df_for_training_scaled = train_df[cols]
    df_for_testing_scaled = test_df[cols]
#df_for_training_scaled
# scaler_label = MinMaxScaler(feature_range=(0,1))
# label_for_training_scaled = scaler_label.fit_transform(train_df['new_label']..values)
# label_for_testing_scaled= scaler_label.transform(train_df['new_label'].values)
# #df_for_training_scaled


class Config():
    data_path = '../data/data1/train/power.csv'
    timestep = 18  # 时间步长,就是利用多少时间窗口
    batch_size = 32  # 批次大小
    feature_size = 1  # 每个步长对应的特征数量,这里只使用1维,每天的风速
    hidden_size = 256  # 隐层大小
    output_size = 1  # 由于是单输出任务,最终输出层大小为1,预测未来1天风速
    num_layers = 2  # lstm的层数
    epochs = 10 # 迭代轮数
    best_loss = 0 # 记录损失
    learning_rate = 0.00003 # 学习率
    model_name = 'lstm' # 模型名称
    save_path = './{}.pth'.format(model_name) # 最优模型保存路径
    
config = Config()

x_train, x_test, y_train, y_test = train_test_split(df_for_training_scaled.values, train_df['new_label'].values,shuffle=False, test_size=0.2)


# 将数据转为tensor
x_train_tensor = torch.from_numpy(x_train.reshape(-1,config.timestep,1)).to(torch.float32)
y_train_tensor = torch.from_numpy(y_train.reshape(-1,1)).to(torch.float32)
x_test_tensor = torch.from_numpy(x_test.reshape(-1,config.timestep,1)).to(torch.float32)
y_test_tensor = torch.from_numpy(y_test.reshape(-1,1)).to(torch.float32)

# 5.形成训练数据集
train_data = TensorDataset(x_train_tensor, y_train_tensor)
test_data = TensorDataset(x_test_tensor, y_test_tensor)

# 6.将数据加载成迭代器
train_loader = torch.utils.data.DataLoader(train_data,
                                           config.batch_size,
                                           False)

test_loader = torch.utils.data.DataLoader(test_data,
                                          config.batch_size,
                                          False)


#train_df[cols]
# 7.定义GRU网络
#train_df[cols]
# 7.定义LSTM网络
#train_df[cols]
# 7.定义LSTM网络
class GRUModel(nn.Module):
    def __init__(self, feature_size, hidden_size, num_layers, output_size):
        super(GRUModel, self).__init__()
        self.hidden_size = hidden_size  # 隐层大小
        self.num_layers = num_layers  # lstm层数
        # feature_size为特征维度,就是每个时间点对应的特征数量,这里为1
        self.gru = nn.GRU(feature_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, hidden=None):
        #print(x.shape)
        batch_size = x.shape[0] # 获取批次大小 batch, time_stamp , feat_size
        
        # 初始化隐层状态
        
        h_0 = x.data.new(self.num_layers, batch_size, self.hidden_size).fill_(0).float()
        if hidden is not None:
            h_0 = hidden
            
        # LSTM运算
        output, (h_0, c_0) = self.gru(x,h_0)
        
        # 全连接层
        output = self.fc(output)  # 形状为batch_size * timestep, 1
        
        # 我们只需要返回最后一个时间片的数据即可
        return output[:, -1, :]
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络
model
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络
model
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络
model



loss_function = nn.L1Loss()  # 定义损失函数
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)  # 定义优化器
from tqdm import tqdm

# 8.模型训练
for epoch in range(config.epochs):
    model.train()
    running_loss = 0
    train_bar = tqdm(train_loader)  # 形成进度条
    for data in train_bar:
        x_train, y_train = data  # 解包迭代器中的X和Y
        optimizer.zero_grad()
        y_train_pred = model(x_train)
        loss = loss_function(y_train_pred, y_train.reshape(-1, 1))
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                 config.epochs,
                                                                 loss)

    # 模型验证
    model.eval()
    test_loss = 0
    with torch.no_grad():
        test_bar = tqdm(test_loader)
        for data in test_bar:
            x_test, y_test = data
            y_test_pred = model(x_test)
            test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1))

    if test_loss < config.best_loss:
        config.best_loss = test_loss
        torch.save(model.state_dict(), save_path)

print('Finished Training')
复制代码
train epoch[1/10] loss:328.774: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:39<00:00, 37.40it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:12<00:00, 72.01it/s]
train epoch[2/10] loss:304.381: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:34<00:00, 39.46it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:10<00:00, 93.18it/s]
train epoch[3/10] loss:282.113: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:20<00:00, 46.54it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:07<00:00, 126.80it/s]
train epoch[4/10] loss:261.886: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:13<00:00, 50.64it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:07<00:00, 117.70it/s]
train epoch[5/10] loss:243.400: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:16<00:00, 48.81it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:08<00:00, 110.87it/s]
train epoch[6/10] loss:226.522: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:15<00:00, 49.69it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:07<00:00, 125.57it/s]
train epoch[7/10] loss:210.942: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:06<00:00, 56.40it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:05<00:00, 168.44it/s]
train epoch[8/10] loss:196.387: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:07<00:00, 55.62it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:07<00:00, 119.23it/s]
train epoch[9/10] loss:182.767: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:12<00:00, 51.59it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:06<00:00, 145.97it/s]
train epoch[10/10] loss:170.060: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:06<00:00, 56.09it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:07<00:00, 118.48it/s]

1.2 双向的GRU

复制代码
#train_df[cols]
# 7.定义LSTM网络
class GRUModel(nn.Module):
    def __init__(self, feature_size, hidden_size, num_layers, output_size):
        super(GRUModel, self).__init__()
        self.hidden_size = hidden_size  # 隐层大小
        self.num_layers = num_layers  # lstm层数
        # feature_size为特征维度,就是每个时间点对应的特征数量,这里为1
        self.gru = nn.GRU(feature_size, hidden_size, num_layers, batch_first=True,bidirectional=True)
        self.fc = nn.Linear(hidden_size*2, output_size)

    def forward(self, x, hidden=None):
        #print(x.shape)
        batch_size = x.shape[0] # 获取批次大小 batch, time_stamp , feat_size
        
        # 初始化隐层状态
        
        h_0 = x.data.new(2*self.num_layers, batch_size, self.hidden_size).fill_(0).float()
        if hidden is not None:
            h_0 = hidden
            
        # LSTM运算
        output, hidden = self.gru(x,h_0)
        
        # 全连接层
        output = self.fc(output)  # 形状为batch_size * timestep, 1
        
        # 我们只需要返回最后一个时间片的数据即可
        return output[:, -1, :]
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络
相关推荐
mit6.8246 分钟前
[Agent开发平台] 后端的后端 | MySQL | Redis | RQ | idgen | ObjectStorage
人工智能·python
GIOTTO情44 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术1 小时前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码1 小时前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀1 小时前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心2 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心2 小时前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩2 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan2 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意2 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股