Machine leading 中Missing Values可视化--missingo

快速可视化数据集中缺失值的好工具是专门的库-missuno。我们将在下面演示它。

1安装

py 复制代码
pip install missingno

2查看缺失值

py 复制代码
for col in train_events.columns:
    percent_nan = train_events[col].isnull().mean() * 100
    msg = f"column: {col:>10}\t Percent of NaN value: {percent_nan:.2f}%"
    print(f"\n---> {msg}")
    ```


---> column:  series_id	 Percent of NaN value: 0.00%

---> column:      night	 Percent of NaN value: 0.00%

---> column:      event	 Percent of NaN value: 0.00%

---> column:       step	 Percent of NaN value: 33.93%

---> column:  timestamp	 Percent of NaN value: 33.93%

---> column:       year	 Percent of NaN value: 33.93%

---> column:      month	 Percent of NaN value: 33.93%

---> column:        day	 Percent of NaN value: 33.93%

---> column:       hour	 Percent of NaN value: 33.93%
ini 复制代码
# 3使用方法
1. bar方法
```py
import missingno as msno
msno.bar(train, color=(0.4,0.4,0.6))
  1. matrix()
py 复制代码
msno.matrix(train_events, color=(0.3,0.3,0.5))

根据图表中白线的数量,我们可以推断数据集中的缺失值情况。观察到白线越多,说明数据集中的缺失值越多。图表左侧的纵坐标显示了样本数量的起始和结束值,即数据集包含了14508条数据。右下角的数字3表示数据集中有3列没有缺失值,而右侧的数字9表示数据集总共有9列数据。

  1. heatmap()
  • 缺失变量的相关关系
  • 相关热missingno图衡量无效相关性:一个变量的存在或不存在对另一个变量的存在的影响程度:
py 复制代码
msno.heatmap(train_events)
  1. dendrogram():
py 复制代码
msno.train_events(train_events)

树状图通过一种分层聚类算法(由Scipy提供)可以更全面地揭示变量之间的关联关系,进一步展示出比相关热图中可见的成对趋势更深入的趋势。

在树状图的构建过程中,变量根据它们之间的无效相关性(以二进制距离衡量)被彼此分类。在每一步的分割中,选择能够最小化剩余簇之间距离的组合方式。当变量集合越单调时,它们的总距离越接近于零,同时它们的平均距离(y轴)也越接近于零。

官方文档

相关推荐
渡我白衣2 小时前
未来的 AI 操作系统(八)——灵知之门:当智能系统开始理解存在
人工智能·深度学习·opencv·机器学习·计算机视觉·语言模型·人机交互
Highcharts.js3 小时前
3D 图表:有用的可视化工具还是误导性的幻觉?
信息可视化·数据可视化·highcharts·3d图表·图表库·highcharts 3d图表·数据绘图
CUMT_DJ4 小时前
唐宇迪2025最新机器学习课件——学习心得(1)
人工智能·机器学习
丁浩6664 小时前
Python机器学习---1.数据类型和算法:线性回归
开发语言·python·机器学习·线性回归
流烟默5 小时前
机器学习中一些场景的模型评估与理解图表
大数据·人工智能·机器学习
十三画者5 小时前
【文献分享】acmgscaler:用于在 ACMG/AMP 框架内对基因层面的变异效应得分进行标准化校准。
数据挖掘·数据分析·r语言
JJJJ_iii5 小时前
【机器学习07】 激活函数精讲、Softmax多分类与优化器进阶
人工智能·笔记·python·算法·机器学习·分类·线性回归
Theodore_10225 小时前
机器学习(2) 线性回归和代价函数
人工智能·深度学习·机器学习·线性回归·代价函数
机器学习之心6 小时前
198种组合算法+优化RF随机森林+SHAP分析+新数据预测!机器学习可解释分析,强烈安利,粉丝必备!
算法·随机森林·机器学习·shap分析·198种组合算法