决策树学习

1. 背景

DT决策树是一种基本的分类与回归方法,其学习时,利用训练数据,根据损失函数最小化原则建立DT模型。

分类DT主要优点:模型具有可读性,分类速度快。

由DT树的根结点到叶结点的每一条路径构建一条规则,即组合特征 ,路径上内部结点

的特征对应着规则的条件,而叶结点的类对应着规则的结论。这些路径互斥且完备。

DT学习通常包括3个步骤:特征选择、DT的生成与DT的修剪。DT的生成只考虑局部最优,而DT的剪枝则考虑全局最优。

DT学习是由训练数据集估计条件概率模型,其损失函数通常是正则化的极大似然函数,其策略是损失函数为目标函数的最小化。

2. 特征选择

特征选择在于选取对训练数据具有分类能力的特征,这样可以提高DT学习的效率。通常特征选择的准则是信息增益或信息增益比。

2.1 熵

随机变量X的熵定义为 (对数以2为底时,熵的单位叫bit;以e为底时,熵的单位叫nat)。

其中 ,i=1,2,...,n

熵只依赖于X的分布,与X的取值无关,且

(1)ID3算法;

(2)C4.5算法;

(3)CART算法;

3. DT的生成

4. DT的剪枝

相关推荐
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
云上艺旅6 小时前
K8S学习之基础七十四:部署在线书店bookinfo
学习·云原生·容器·kubernetes
你觉得2056 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
hyshhhh7 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
A旧城以西7 小时前
数据结构(JAVA)单向,双向链表
java·开发语言·数据结构·学习·链表·intellij-idea·idea
无所谓จุ๊บ7 小时前
VTK知识学习(50)- 交互与Widget(一)
学习·vtk
FAREWELL000757 小时前
C#核心学习(七)面向对象--封装(6)C#中的拓展方法与运算符重载: 让代码更“聪明”的魔法
学习·c#·面向对象·运算符重载·oop·拓展方法
杉之8 小时前
选择排序笔记
java·算法·排序算法
吴梓穆8 小时前
UE5学习笔记 FPS游戏制作38 继承标准UI
笔记·学习·ue5
烂蜻蜓8 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法