深度学习18

卷积层

查看每个数据

使用tensorboard查看
池化层






使用数据集进行训练

创建实例,使用tensorboard进行显示

最大池化保留了图片信息,神经网络训练的数据量大大减小,可以加快训练

非线性激活

非线性激活为神经网络加入了一些非线性的特质

inplace是否对原来的位置进行替换,等于false可以防止数据的丢失

以上是搭建网络的过程,接着创建网络


线性层




flatten将图片展平


sequential

对CIFAR10model结构


尺寸不变padding=2


搭建网络

验证网络

sequential使得代码更加简洁

计算图



损失函数与反向传播

需要浮点数


交叉熵

相关推荐
吹风看太阳11 分钟前
机器学习16-总体架构
人工智能·机器学习
moonsims1 小时前
全国产化行业自主无人机智能处理单元-AI飞控+通信一体化模块SkyCore-I
人工智能·无人机
MUTA️1 小时前
ELMo——Embeddings from Language Models原理速学
人工智能·语言模型·自然语言处理
海豚调度1 小时前
Linux 基金会报告解读:开源 AI 重塑经济格局,有人失业,有人涨薪!
大数据·人工智能·ai·开源
T__TIII1 小时前
Dify 插件非正式打包
人工智能
jerwey1 小时前
大语言模型(LLM)按架构分类
人工智能·语言模型·分类
微学AI1 小时前
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
深度学习·分类·cnn
IT古董1 小时前
【第三章:神经网络原理详解与Pytorch入门】02.深度学习框架PyTorch入门-(5)PyTorch 实战——使用 RNN 进行人名分类
pytorch·深度学习·神经网络
令狐少侠20111 小时前
ai之RAG本地知识库--基于OCR和文本解析器的新一代RAG引擎:RAGFlow 认识和源码剖析
人工智能·ai
小叮当爱咖啡1 小时前
Seq2seq+Attention 机器翻译
人工智能·自然语言处理·机器翻译