深度学习18

卷积层

查看每个数据

使用tensorboard查看
池化层






使用数据集进行训练

创建实例,使用tensorboard进行显示

最大池化保留了图片信息,神经网络训练的数据量大大减小,可以加快训练

非线性激活

非线性激活为神经网络加入了一些非线性的特质

inplace是否对原来的位置进行替换,等于false可以防止数据的丢失

以上是搭建网络的过程,接着创建网络


线性层




flatten将图片展平


sequential

对CIFAR10model结构


尺寸不变padding=2


搭建网络

验证网络

sequential使得代码更加简洁

计算图



损失函数与反向传播

需要浮点数


交叉熵

相关推荐
振鹏Dong3 分钟前
依托 <AI 原生应用架构白皮书>,看 AI 原生应用的发展与实践
人工智能
智行众维1 小时前
自动驾驶的“虚拟驾校”如何炼成?
人工智能·自动驾驶·汽车·智能驾驶·智能网联汽车·智能驾驶仿真测试·智驾系统
空白到白2 小时前
NLP-注意力机制
人工智能·自然语言处理
大千AI助手3 小时前
指数分布:从理论到机器学习应用
人工智能·机器学习·参数估计·概率密度函数·mle·指数分布·累积分布函数
MATLAB代码顾问3 小时前
MATLAB绘制多种混沌系统
人工智能·算法·matlab
搬砖的小码农_Sky3 小时前
人形机器人:Tesla Optimus的AI集成细节
人工智能·ai·机器人
做运维的阿瑞3 小时前
2025 年度国产大模型「开源 vs. 闭源」深度评测与实战指南
人工智能·低代码·开源
渡我白衣4 小时前
深度学习入门(三)——优化算法与实战技巧
人工智能·深度学习
可触的未来,发芽的智生4 小时前
触摸未来2025.10.10:记忆的种子,当神经网络拥有了临时工作区,小名喜忆记系统
人工智能·python·神经网络·机器学习·架构
极客BIM工作室4 小时前
演化搜索与群集智能:五种经典算法探秘
人工智能·算法·机器学习