深度学习18

卷积层

查看每个数据

使用tensorboard查看
池化层






使用数据集进行训练

创建实例,使用tensorboard进行显示

最大池化保留了图片信息,神经网络训练的数据量大大减小,可以加快训练

非线性激活

非线性激活为神经网络加入了一些非线性的特质

inplace是否对原来的位置进行替换,等于false可以防止数据的丢失

以上是搭建网络的过程,接着创建网络


线性层




flatten将图片展平


sequential

对CIFAR10model结构


尺寸不变padding=2


搭建网络

验证网络

sequential使得代码更加简洁

计算图



损失函数与反向传播

需要浮点数


交叉熵

相关推荐
IMER SIMPLE1 分钟前
人工智能-python-深度学习-神经网络-GoogLeNet
人工智能·python·深度学习
钮钴禄·爱因斯晨4 分钟前
深入剖析LLM:从原理到应用与挑战
开发语言·人工智能
InternLM8 分钟前
专为“超大模型而生”,新一代训练引擎 XTuner V1 开源!
人工智能·开源·xtuner·书生大模型·大模型训练框架·大模型预训练·大模型后训练
JT85839626 分钟前
AI GEO 优化能否快速提升网站在搜索引擎的排名?
人工智能·搜索引擎
幂律智能28 分钟前
吾律——让普惠法律服务走进生活
人工智能·经验分享
IT_陈寒33 分钟前
Java性能优化:从这8个关键指标开始,让你的应用提速50%
前端·人工智能·后端
yzx99101337 分钟前
构建未来:深度学习、嵌入式与安卓开发的融合创新之路
android·人工智能·深度学习
非门由也1 小时前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
机器学习之心2 小时前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER2 小时前
AI中的“预训练”是什么意思
人工智能