深度学习18

卷积层

查看每个数据

使用tensorboard查看
池化层






使用数据集进行训练

创建实例,使用tensorboard进行显示

最大池化保留了图片信息,神经网络训练的数据量大大减小,可以加快训练

非线性激活

非线性激活为神经网络加入了一些非线性的特质

inplace是否对原来的位置进行替换,等于false可以防止数据的丢失

以上是搭建网络的过程,接着创建网络


线性层




flatten将图片展平


sequential

对CIFAR10model结构


尺寸不变padding=2


搭建网络

验证网络

sequential使得代码更加简洁

计算图



损失函数与反向传播

需要浮点数


交叉熵

相关推荐
盼小辉丶43 分钟前
Transformer实战(4)——从零开始构建Transformer
pytorch·深度学习·transformer
说私域2 小时前
基于开源AI智能客服、AI智能名片与S2B2C商城小程序的微商服务优化及复购转介绍提升策略研究
人工智能·小程序
之歆4 小时前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
paid槮6 小时前
机器学习总结
人工智能·深度学习·机器学习
Hello123网站6 小时前
职得AI简历-免费AI简历生成工具
人工智能·ai工具
亚里随笔7 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼7 小时前
机器学习之PCA降维
人工智能·机器学习
东方不败之鸭梨的测试笔记7 小时前
智能测试用例生成工具设计
人工智能·ai·langchain
失散1310 小时前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
图灵学术计算机论文辅导10 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉