AtCoder ABC163

D - Sum of Large Numbers

不考虑 1 0 100 10^{100} 10100的情况下,检查能取到的最大和与最小和,此时中间的所有数都能取到

给出 1 0 100 10^{100} 10100的用意在于,确保取2个数与取3个数下面取到的和是不相同的。因此遍历取数的个数,累计答案。

python 复制代码
# -*- coding: utf-8 -*-
# @time     : 2023/6/2 13:30
# @file     : atcoder.py
# @software : PyCharm

import bisect
import copy
import sys
from itertools import permutations
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(1000)


def main():
    items = sys.version.split()
    if items[0] == '3.10.6':
        fp = open("in.txt")
    else:
        fp = sys.stdin

    n, k = map(int, fp.readline().split())
    ans = 0
    mod = 10 ** 9 + 7
    for i in range(k, n + 2):
        a = (0 + i - 1) * i // 2
        b = (n - i + 1 + n) * i // 2
        ans = (ans + (b - a + 1)) % mod
    print(ans)


if __name__ == "__main__":
    main()

E - Active Infants

区间dp

设 d p [ i ] [ j ] dp[i][j] dp[i][j]的区间为 l l l,代表 1.. l 1..l 1..l的数放入从i到j的位置能获得的最大数

从小往大放,最大的数应该放在两侧
d p ( i , j ) = m a x ( d p ( i + 1 , j ) + c o s t ( i ) , d p ( i , j − 1 ) + c o s t ( j ) ) dp(i,j)=max(dp(i+1,j)+cost(i),dp(i,j-1)+cost(j)) dp(i,j)=max(dp(i+1,j)+cost(i),dp(i,j−1)+cost(j))

python 复制代码
# -*- coding: utf-8 -*-
# @time     : 2023/6/2 13:30
# @author   : [email protected]
# @desc     :
# @file     : main.py
# @software : PyCharm

import bisect
import copy
import sys
from itertools import permutations
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(50050)


def main():
    items = sys.version.split()
    if items[0] == '3.8.10':
        fp = open("in.txt")
    else:
        fp = sys.stdin
    n = int(fp.readline())
    a = list(map(int, fp.readline().split()))
    dp = [[0] * n for _ in range(n)]
    items = []
    for i, x in enumerate(a):
        items.append([x, i])
    items.sort()
    for i in range(n):
        dp[i][i] = items[0][0] * abs(items[0][1] - i)
    for l in range(2, n + 1):
        for i in range(n):
            j = i + l - 1
            if j >= n:
                break
            x, p = items[l - 1]
            dp[i][j] = max(dp[i + 1][j] + x * abs(p - i), dp[i][j - 1] + x * abs(p - j))
    ans = dp[0][n - 1]
    print(ans)


if __name__ == "__main__":
    main()

F - path pass i

首先要反过来求没有颜色的点对,可以转换为求不同染色下的连通集。

本题的关键是建立sum数组,从而求出连通集的大小。

sum[i]数组按搜索顺序,意思为访问到当前,颜色为i的最大子树和

以上图为例,访问到2完成后,红色最大的子树是以2为节点,sum=6

而当访问3时,红色子树分为两颗:4与7,sum=2

在dfs处理时,设当前的节点为u,不能简单的将sz[u]加到sum中,而需要预先记录下之前的sum值

建立起sum数组后,按照u节点的子节点进行计算

如遍历到u=2后,枚举子节点3,发现子节点里面最大子树和为2,还剩下sz[v]-2=3。3就是连通集的大小,计入答案中。

最后别忘了将根节点所属连通集计入答案。

python 复制代码
# -*- coding: utf-8 -*-
# @time     : 2023/6/2 13:30
# @file     : atcoder.py
# @software : PyCharm

import bisect
import copy
import sys
from itertools import permutations
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(200020)


def main():
    items = sys.version.split()
    if items[0] == '3.10.6':
        fp = open("in.txt")
    else:
        fp = sys.stdin

    def f(x):
        return x * (x + 1) // 2

    n = int(fp.readline())
    ans = [f(n)] * (n + 1)
    sz = [0] * (n + 1)
    c = list(map(int, fp.readline().split()))
    c = [-1] + c
    s = [0] * (n + 1)
    g = [[] for _ in range(n + 1)]
    for i in range(n - 1):
        a, b = map(int, fp.readline().split())
        g[a].append(b)
        g[b].append(a)

    def dfs(u, fa):
        sz[u] = 1
        col = c[u]
        save = s[col]
        for v in g[u]:
            if v == fa:
                continue
            t = s[col]
            dfs(v, u)
            sz[u] += sz[v]
            dt = s[col] - t
            # print(v, col, s[col], t, sz[v] - dt)
            ans[col] -= f(sz[v] - dt)
        s[col] = save + sz[u]
        # 因为有包含关系,s[col]是当前访问到的根节点为col的最大的子树和
        # print(u, col, s[col])

    dfs(1, 0)
    for i in range(1, n + 1):
        ans[i] -= f(n - s[i])
        print(ans[i])


if __name__ == "__main__":
    main()
相关推荐
飞桨PaddlePaddle1 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
Starry_hello world2 小时前
C++ 快速幂算法
c++·算法·有问必答
石去皿3 小时前
力扣hot100 91-100记录
算法·leetcode·职场和发展
SsummerC4 小时前
【leetcode100】组合总和Ⅳ
数据结构·python·算法·leetcode·动态规划
2301_807611495 小时前
77. 组合
c++·算法·leetcode·深度优先·回溯
SsummerC6 小时前
【leetcode100】零钱兑换Ⅱ
数据结构·python·算法·leetcode·动态规划
好易学·数据结构7 小时前
可视化图解算法:二叉树的最大深度(高度)
数据结构·算法·二叉树·最大高度·最大深度·二叉树高度·二叉树深度
程序员-King.7 小时前
day47—双指针-平方数之和(LeetCode-633)
算法·leetcode
阳洞洞7 小时前
leetcode 1035. Uncrossed Lines
算法·leetcode·动态规划·子序列问题
小鹿鹿啊8 小时前
C语言编程--15.四数之和
c语言·数据结构·算法