Spark---SparkCore(四)

三、Spark Master HA

1、Master的高可用原理

Standalone集群只有一个Master,如果Master挂了就无法提交应用程序,需要给Master进行高可用配置,Master的高可用可以使用fileSystem(文件系统)和zookeeper(分布式协调服务)。

fileSystem只有存储功能,可以存储Master的元数据信息,用fileSystem搭建的Master高可用,在Master失败时,需要我们手动启动另外的备用Master,这种方式不推荐使用。

zookeeper有选举和存储功能,可以存储Master的元素据信息,使用zookeeper搭建的Master高可用,当Master挂掉时,备用的Master会自动切换,推荐使用这种方式搭建Master的HA。

2、Master高可用搭建

1)、在Spark Master节点上配置主Master,配置spark-env.sh

export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=node3:2181,node4:2181,node5:2181 
-Dspark.deploy.zookeeper.dir=/sparkmaster0821"

2)、发送到其他worker节点上

scp spark-env.sh root@node2:'pwd'
scp spark-env.sh root@node3:'pwd'

3)、找一台节点(非主Master节点)配置备用 Master,修改spark-env.sh配置节点上的MasterIP

export SPARK_MASTER_IP=node2

4)、启动集群之前启动zookeeper集群

../zkServer.sh start

5)、启动spark Standalone集群,启动备用Master

6)、打开主Master和备用Master WebUI页面,观察状态

3、注意点

主备切换过程中不能提交Application

主备切换过程中不影响已经在集群中运行的Application。因为Spark是粗粒度资源调度

4、测试验证

提交SparkPi程序,kill主Master观察现象。

./spark-submit 
--master spark://node1:7077,node2:7077 
--class org.apache.spark.examples.SparkPi 
../lib/spark-examples-1.6.0-hadoop2.6.0.jar 
10000

四、Spark Shuffle

1、SparkShuffle概念

reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value。

**问题:**聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的partition极有可能分布在各个节点上。

如何聚合?

**-- Shuffle Write:**上一个stage的每个map task就必须保证将自己处理的当前分区的数据相同的key写入一个分区文件中,可能会写入多个不同的分区文件中。

**-- Shuffle Read:**reduce task就会从上一个stage的所有task所在的机器上寻找属于己的那些分区文件,这样就可以保证每一个key所对应的value都会汇聚到同一个节点上去处理和聚合。

Spark中有两种Shuffle管理类型,HashShufflManager和SortShuffleManager,Spark1.2之前是HashShuffleManager, Spark1.2引入SortShuffleManager,在Spark 2.0+版本中已经将HashShuffleManager丢弃。

2、HashShuffleManager

1)、普通机制

普通机制示意图
执行流程
  1. 每一个map task将不同结果写到不同的buffer中,每个buffer的大小为32K。buffer起到数据缓存的作用。
  2. 每个buffer文件最后对应一个磁盘小文件。
  3. reduce task来拉取对应的磁盘小文件。
总结
  • .map task的计算结果会根据分区器(默认是hashPartitioner)来决定写入到哪一个磁盘小文件中去。ReduceTask会去Map端拉取相应的磁盘小文件。
  • .产生的磁盘小文件的个数:

M(map task的个数)*R(reduce task的个数)

存在的问题

产生的磁盘小文件过多,会导致以下问题:

  1. 在Shuffle Write过程中会产生很多写磁盘小文件的对象。
  2. 在Shuffle Read过程中会产生很多读取磁盘小文件的对象。
  3. 在JVM堆内存中对象过多会造成频繁的gc,gc还无法解决运行所需要的内存 的话,就会OOM。
  4. 在数据传输过程中会有频繁的网络通信,频繁的网络通信出现通信故障的可能性大大增加,一旦网络通信出现了故障会导致shuffle file cannot find 由于这个错误导致的task失败,TaskScheduler不负责重试,由DAGScheduler负责重试Stage。

2)、合并机制

合并机制示意图
总结

产生磁盘小文件的个数:C(core的个数)*R(reduce的个数)

3、SortShuffleManager

1)、普通机制

普通机制示意图
执行流程
  1. map task 的计算结果会写入到一个内存数据结构里面,内存数据结构默认是5M
  2. 在shuffle的时候会有一个定时器,不定期的去估算这个内存结构的大小,当内存结构中的数据超过5M时,比如现在内存结构中的数据为5.01M,那么他会申请5.01*2-5=5.02M内存给内存数据结构。
  3. 如果申请成功不会进行溢写,如果申请不成功,这时候会发生溢写磁盘。
  4. 在溢写之前内存结构中的数据会进行排序分区
  5. 然后开始溢写磁盘,写磁盘是以batch的形式去写,一个batch是1万条数据,
  6. map task执行完成后,会将这些磁盘小文件合并成一个大的磁盘文件,同时生成一个索引文件。
  7. reduce task去map端拉取数据的时候,首先解析索引文件,根据索引文件再去拉取对应的数据。
总结

产生磁盘小文件的个数: 2*M(map task的个数)

2)、bypass机制

bypass机制示意图
总结
  • .bypass运行机制的触发条件如下:shuffle reduce task的数量小于spark.shuffle.sort.bypassMergeThreshold的参数值。这个值默认是200。
  • .产生的磁盘小文件为:2*M(map task的个数)
相关推荐
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
青云交3 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-1))(11/30)
大数据·计算资源·应用案例·数据交互·impala 性能优化·机器学习融合·行业拓展
Json_181790144806 小时前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
lzhlizihang7 小时前
【spark的集群模式搭建】Standalone集群模式的搭建(简单明了的安装教程)
spark·standalone模式·spark集群搭建
WX187021128737 小时前
在分布式光伏电站如何进行电能质量的治理?
分布式
Qspace丨轻空间8 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客9 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata10 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
不能再留遗憾了10 小时前
RabbitMQ 高级特性——消息分发
分布式·rabbitmq·ruby
水豚AI课代表10 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc