浅用tensorflow天气预测

1.开发环境

(1)Python3.8

(2)Anaconda3

(3)Tensorflow

(4)Numpy

(5)Pandas

(6)Sklearn

先依次安装好上面的软件和包,其中python3.8和Anaconda3是直接下载安装,如果官方链接比较慢,可以搜下三方的源安装。其中Anaconda3不是必须的,用这个工具是因为确实挺香的。

剩下的3-6都是pip安装的包,注意使用Anaconda3的话就在Anaconda Prompt里使用pip命令,如果是其他集成环境或者原生的python环境,直接就在cmd里使用pip安装。

2、实现代码

复制代码
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
#####################################################
features = pd.read_csv('C:/Inst/20230411/20230411/训练集.csv')
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#删除前7行无效数据
features = features[7:]
#将avg列单独存起来
labels_avg = np.array(features['avg'])
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#特征中去掉无用标签
features = features.drop('high',axis=1)
features = features.drop('low',axis=1)
features = features.drop('avg',axis=1)
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#转换成可以处理的数据格式
features = np.array(features)
#预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
print('input_features=')
print(input_features[0:7])

#####################################################
#构造网络模型
model1 = tf.keras.Sequential()
model1.add(layers.Dense(16))
model1.add(layers.Dense(32))
model1.add(layers.Dense(1))
#对网络进行配置
model1.compile(optimizer=tf.keras.optimizers.SGD(0.001),loss='mean_squared_error')

#####################################################
#训练
model1.fit(input_features, labels_avg, validation_split=0.1, epochs=50, batch_size=64)

#####################################################
#读入待预测数据
tobe_predict = pd.read_csv('C:/Inst/20230411/20230411/验证集.csv')
#去除前7行数据
tobe_predict = tobe_predict[7:]
#vag列先存起来,后面用来比较验证预测的效果
tobe_predict_avg = np.array(tobe_predict['avg'])
#去掉无用的列
tobe_predict = tobe_predict.drop('avg',axis=1)
tobe_predict = tobe_predict.drop('high',axis=1)
tobe_predict = tobe_predict.drop('low',axis=1)

#转换成合适的格式
tobe_predict = np.array(tobe_predict)

print("数据维度",tobe_predict.shape)

#预处理
tobe_predict = preprocessing.StandardScaler().fit_transform(tobe_predict)
print("tobe_predict=",tobe_predict[0:7])


#####################################################
#预测模型结果
predict1 = model1.predict(tobe_predict)
print("预测的平均温度")
print(predict1)

print("实际的平均温度")
print(tobe_predict_avg)
相关推荐
标贝科技几秒前
标贝科技:大模型领域数据标注的重要性与标注类型分享
数据库·人工智能
aminghhhh9 分钟前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
格林威11 分钟前
Baumer工业相机堡盟工业相机的工业视觉是否可以在室外可以做视觉检测项目
c++·人工智能·数码相机·计算机视觉·视觉检测
陈苏同学39 分钟前
MPC控制器从入门到进阶(小车动态避障变道仿真 - Python)
人工智能·python·机器学习·数学建模·机器人·自动驾驶
努力毕业的小土博^_^1 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
小小鱼儿小小林2 小时前
用AI制作黑神话悟空质感教程,3D西游记裸眼效果,西游人物跳出书本
人工智能·3d·ai画图
浪淘沙jkp2 小时前
AI大模型学习二十、利用Dify+deepseekR1 使用知识库搭建初中英语学习智能客服机器人
人工智能·llm·embedding·agent·知识库·dify·deepseek
AndrewHZ4 小时前
【图像处理基石】什么是油画感?
图像处理·人工智能·算法·图像压缩·视频处理·超分辨率·去噪算法
Robot2515 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x5 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉