浅用tensorflow天气预测

1.开发环境

(1)Python3.8

(2)Anaconda3

(3)Tensorflow

(4)Numpy

(5)Pandas

(6)Sklearn

先依次安装好上面的软件和包,其中python3.8和Anaconda3是直接下载安装,如果官方链接比较慢,可以搜下三方的源安装。其中Anaconda3不是必须的,用这个工具是因为确实挺香的。

剩下的3-6都是pip安装的包,注意使用Anaconda3的话就在Anaconda Prompt里使用pip命令,如果是其他集成环境或者原生的python环境,直接就在cmd里使用pip安装。

2、实现代码

复制代码
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
#####################################################
features = pd.read_csv('C:/Inst/20230411/20230411/训练集.csv')
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#删除前7行无效数据
features = features[7:]
#将avg列单独存起来
labels_avg = np.array(features['avg'])
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#特征中去掉无用标签
features = features.drop('high',axis=1)
features = features.drop('low',axis=1)
features = features.drop('avg',axis=1)
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#转换成可以处理的数据格式
features = np.array(features)
#预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
print('input_features=')
print(input_features[0:7])

#####################################################
#构造网络模型
model1 = tf.keras.Sequential()
model1.add(layers.Dense(16))
model1.add(layers.Dense(32))
model1.add(layers.Dense(1))
#对网络进行配置
model1.compile(optimizer=tf.keras.optimizers.SGD(0.001),loss='mean_squared_error')

#####################################################
#训练
model1.fit(input_features, labels_avg, validation_split=0.1, epochs=50, batch_size=64)

#####################################################
#读入待预测数据
tobe_predict = pd.read_csv('C:/Inst/20230411/20230411/验证集.csv')
#去除前7行数据
tobe_predict = tobe_predict[7:]
#vag列先存起来,后面用来比较验证预测的效果
tobe_predict_avg = np.array(tobe_predict['avg'])
#去掉无用的列
tobe_predict = tobe_predict.drop('avg',axis=1)
tobe_predict = tobe_predict.drop('high',axis=1)
tobe_predict = tobe_predict.drop('low',axis=1)

#转换成合适的格式
tobe_predict = np.array(tobe_predict)

print("数据维度",tobe_predict.shape)

#预处理
tobe_predict = preprocessing.StandardScaler().fit_transform(tobe_predict)
print("tobe_predict=",tobe_predict[0:7])


#####################################################
#预测模型结果
predict1 = model1.predict(tobe_predict)
print("预测的平均温度")
print(predict1)

print("实际的平均温度")
print(tobe_predict_avg)
相关推荐
reddingtons27 分钟前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK29 分钟前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch1 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch1 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey2 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币2 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争2 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道2 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
算家计算3 小时前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源