浅用tensorflow天气预测

1.开发环境

(1)Python3.8

(2)Anaconda3

(3)Tensorflow

(4)Numpy

(5)Pandas

(6)Sklearn

先依次安装好上面的软件和包,其中python3.8和Anaconda3是直接下载安装,如果官方链接比较慢,可以搜下三方的源安装。其中Anaconda3不是必须的,用这个工具是因为确实挺香的。

剩下的3-6都是pip安装的包,注意使用Anaconda3的话就在Anaconda Prompt里使用pip命令,如果是其他集成环境或者原生的python环境,直接就在cmd里使用pip安装。

2、实现代码

复制代码
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
#####################################################
features = pd.read_csv('C:/Inst/20230411/20230411/训练集.csv')
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#删除前7行无效数据
features = features[7:]
#将avg列单独存起来
labels_avg = np.array(features['avg'])
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#特征中去掉无用标签
features = features.drop('high',axis=1)
features = features.drop('low',axis=1)
features = features.drop('avg',axis=1)
print("数据维度",features.shape)
print('features=')
print(features.head(10))

#####################################################
#转换成可以处理的数据格式
features = np.array(features)
#预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
print('input_features=')
print(input_features[0:7])

#####################################################
#构造网络模型
model1 = tf.keras.Sequential()
model1.add(layers.Dense(16))
model1.add(layers.Dense(32))
model1.add(layers.Dense(1))
#对网络进行配置
model1.compile(optimizer=tf.keras.optimizers.SGD(0.001),loss='mean_squared_error')

#####################################################
#训练
model1.fit(input_features, labels_avg, validation_split=0.1, epochs=50, batch_size=64)

#####################################################
#读入待预测数据
tobe_predict = pd.read_csv('C:/Inst/20230411/20230411/验证集.csv')
#去除前7行数据
tobe_predict = tobe_predict[7:]
#vag列先存起来,后面用来比较验证预测的效果
tobe_predict_avg = np.array(tobe_predict['avg'])
#去掉无用的列
tobe_predict = tobe_predict.drop('avg',axis=1)
tobe_predict = tobe_predict.drop('high',axis=1)
tobe_predict = tobe_predict.drop('low',axis=1)

#转换成合适的格式
tobe_predict = np.array(tobe_predict)

print("数据维度",tobe_predict.shape)

#预处理
tobe_predict = preprocessing.StandardScaler().fit_transform(tobe_predict)
print("tobe_predict=",tobe_predict[0:7])


#####################################################
#预测模型结果
predict1 = model1.predict(tobe_predict)
print("预测的平均温度")
print(predict1)

print("实际的平均温度")
print(tobe_predict_avg)
相关推荐
熊猫_豆豆3 分钟前
神经网络的科普,功能用途,包含的数学知识
人工智能·深度学习·神经网络
笨蛋不要掉眼泪13 分钟前
deepseek封装结合websocket实现与ai对话
人工智能·websocket·网络协议
hesorchen24 分钟前
算力与数据驱动的 AI 技术演进全景(1999-2024):模型范式、Infra 数据、语言模型与多模态的关键突破
人工智能·语言模型·自然语言处理
你也渴望鸡哥的力量么40 分钟前
基于边缘信息提取的遥感图像开放集飞机检测方法
人工智能·计算机视觉
xian_wwq1 小时前
【学习笔记】深度学习中梯度消失和爆炸问题及其解决方案研究
人工智能·深度学习·梯度
StarRocks_labs1 小时前
StarRocks 4.0:Real-Time Intelligence on Lakehouse
starrocks·人工智能·json·数据湖·存算分离
Tracy9731 小时前
DNR6521x_VC1:革新音频体验的AI降噪处理器
人工智能·音视频·xmos模组固件
weixin_307779131 小时前
基于AWS Lambda事件驱动架构与S3智能生命周期管理的制造数据自动化处理方案
人工智能·云计算·制造·aws
yumgpkpm2 小时前
CMP(类ClouderaCDP7.3(404次编译) )完全支持华为鲲鹏Aarch64(ARM)使用 AI 优化库存水平、配送路线的具体案例及说明
大数据·人工智能·hive·hadoop·机器学习·zookeeper·cloudera
cpq372 小时前
AI学习研究——KIMI对佛教四圣谛深度研究
人工智能·学习