Pandas 数据处理入门

原文链接:mp.weixin.qq.com/s/WtF56bmzy...

Python的Pandas库是数据科学家和分析师的神器。在本文中,我们将详细探讨如何利用Pandas进行有效的数据处理,包括数据结构的理解、数据的导入、探索和基本处理。

认识Pandas

  • 简要介绍Pandas的重要性
  • 安装和导入Pandas库
python 复制代码
import pandas as pd

Pandas数据结构

  • 介绍Series和DataFrame
  • 创建Series和DataFrame的例子
python 复制代码
# Series
s = pd.Series([1, 3, 5, None, 6, 8])

# DataFrame
df = pd.DataFrame({'A': range(1, 5),
                   'B': pd.Timestamp('20230901'),
                   'C': pd.Series(1, index=list(range(4)), dtype='float32'),
                   'D': pd.Categorical(["test", "train", "test", "train"]),
                   'E': 'foo'})

第三部分:数据导入

  • 如何读取CSV和Excel文件
  • 示例代码展示数据的导入过程
python 复制代码
# 读取CSV
df_csv = pd.read_csv('example.csv')

# 读取Excel
df_excel = pd.read_excel('example.xlsx')

数据探索

  • 查看数据的基本信息(如:shape, head, tail, describe等)
  • 选择、过滤和排序数据的方法
python 复制代码
# 查看前几行
df.head()

# 描述性统计
df.describe()

# 列选择和过滤
df_filtered = df[df['A'] > 2]

# 排序
df_sorted = df.sort_values(by='B')

数据清洗

  • 处理缺失数据
  • 修改列名
  • 数据类型转换
python 复制代码
# 处理缺失数据
df.fillna(value=5)

# 修改列名
df.rename(columns={'A': 'a'}, inplace=True)

# 数据类型转换
df['D'] = df['D'].astype('int32')

数据操作

  • 列的增加和删除
  • 数据行的增加和删除
python 复制代码
# 列的增加
df['F'] = df['A'] + df['D']

# 列的删除
df.drop('F', axis=1, inplace=True)

# 行的增加
df.append({'A': 5, 'B': pd.Timestamp('20231001'), 'C': 2.0, 'D': 3, 'E': 'bar'}, ignore_index=True)

# 行的删除
df.drop([0, 1], inplace=True)

结论

Pandas是一个功能强大的数据处理工具,掌握其基础操作对于进行高效的数据分析至关重要。通过本文的介绍,您应该能够开始使用Pandas来处理您的数据。

相关推荐
Wise玩转AI21 小时前
从LLM到Agent:技术迁移的必然趋势
人工智能·python·语言模型·ai智能体
ada7_21 小时前
LeetCode(python)——94.二叉
python·算法·leetcode·链表·职场和发展
广都--编程每日问21 小时前
c++右键菜单统一转化文件为utf8编码
c++·windows·python
ZAz_21 小时前
DAY 28 元组和OS模块
python
plmm烟酒僧21 小时前
OpenVINO 推理 YOLO Demo 分享 (Python)
图像处理·人工智能·python·yolo·openvino·runtime·推理
星云数灵1 天前
机器学习入门实战:使用Scikit-learn完成鸢尾花分类
人工智能·python·机器学习·ai·数据分析·pandas·python数据分析
IT_陈寒1 天前
JavaScript 性能优化:7个 V8 引擎隐藏技巧让你的代码提速200%
前端·人工智能·后端
JustNow_Man1 天前
【UV】 推荐使用UV管理Python
人工智能·python·uv
m0_709214341 天前
【20251203】存档
python